Fields, C. E. (2022) The Three-dimensional Collapse of a Rapidly Rotating 16 M ⊙ Star. The Astrophysical Journal Letters, 924 (1). L15. ISSN 2041-8205
![[thumbnail of Fields_2022_ApJL_924_L15.pdf]](http://archive.go4subs.com/style/images/fileicons/text.png)
Fields_2022_ApJL_924_L15.pdf - Published Version
Download (3MB)
Abstract
I report on the three-dimensional (3D) hydrodynamic evolution of a rapidly rotating 16 M⊙ star to iron core collapse. For the first time, I follow the 3D evolution of the angular momentum (AM) distribution in the iron core and convective shell burning regions for the final 10 minutes up to and including gravitational instability and core collapse. In 3D, convective regions show efficient AM transport that leads to an AM profile that differs in shape and magnitude from MESA within a few shell convective turnover timescales. For different progenitor models, such as those with tightly coupled Si/O convective shells, efficient AM transport in 3D simulations could lead to a significantly different AM distribution in the stellar interior affecting estimates of the natal neutron star or black hole spin. The results suggest that 3D AM transport in convective and rotating shell burning regions are critical components in models of massive stars and could qualitatively alter the explosion outcome and inferred compact remnant properties.
Item Type: | Article |
---|---|
Subjects: | STM Library Press > Physics and Astronomy |
Depositing User: | Unnamed user with email support@stmlibrarypress.com |
Date Deposited: | 03 May 2023 05:32 |
Last Modified: | 09 Sep 2025 03:44 |
URI: | http://archive.go4subs.com/id/eprint/1135 |