Magnetic Field Amplification by a Plasma Cavitation Instability in Relativistic Shock Precursors

Peterson, J. R. and Glenzer, S. and Fiuza, F. (2022) Magnetic Field Amplification by a Plasma Cavitation Instability in Relativistic Shock Precursors. The Astrophysical Journal Letters, 924 (1). L12. ISSN 2041-8205

[thumbnail of Peterson_2022_ApJL_924_L12.pdf] Text
Peterson_2022_ApJL_924_L12.pdf - Published Version

Download (846kB)

Abstract

Plasma streaming instabilities play an important role in magnetic field amplification and particle acceleration in relativistic shocks and their environments. However, in the far shock precursor region where accelerated particles constitute a highly relativistic and dilute beam, streaming instabilities typically become inefficient and operate at very small scales when compared to the gyroradii of the beam particles. We report on a plasma cavitation instability that is driven by dilute relativistic beams and can increase both the magnetic field strength and coherence scale by orders of magnitude to reach near-equipartition values with the beam energy density. This instability grows after the development of the Weibel instability and is associated with the asymmetric response of background leptons and ions to the beam current. The resulting net inductive electric field drives a strong energy asymmetry between positively and negatively charged beam species. Large-scale particle-in-cell simulations are used to verify analytical predictions for the growth and saturation level of the instability and indicate that it is robust over a wide range of conditions, including those associated with pair-loaded plasmas. These results can have important implications for the magnetization and structure of shocks in gamma-ray bursts, and more generally for magnetic field amplification and asymmetric scattering of relativistic charged particles in plasma astrophysical environments.

Item Type: Article
Subjects: STM Library Press > Physics and Astronomy
Depositing User: Unnamed user with email support@stmlibrarypress.com
Date Deposited: 04 May 2023 05:50
Last Modified: 09 Sep 2025 03:44
URI: http://archive.go4subs.com/id/eprint/1132

Actions (login required)

View Item
View Item