THE ASTROPHYSICAL JOURNAL LETTERS, 945:1.32 (6pp), 2023 March 10
© 2023. The Author(s). Published by the American Astronomical Society.

OPEN ACCESS

https://doi.org/10.3847/2041-8213 /acbal5

Building an Acceleration Ladder with Tidal Streams and Pulsar Timing

Peter Craig] , Sukanya Chakrabarti’ , Robyn E. Sanderson® , and Farnik Nikakhtar*
! Department of Physics and Astronomy, Rochester Institute of Technology, Rochester, NY, 14623, USA; pac4607 @rit.edu
Department of Physics and Astronomy, University of Alabama, Huntsville, Huntsville, AL, 35899, USA
3 Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA, 19104, USA
4 Department of Physics, Yale University, New Haven, CT, 06520, USA
Received 2022 November 1; revised 2023 January 30; accepted 2023 February 8; published 2023 March 13

Abstract

We analyse stellar streams in action-angle coordinates combined with recent local direct acceleration
measurements to provide joint constraints on the potential of our galaxy. Our stream analysis uses the
Kullback-Leibler divergence with a likelihood analysis based on the two-point correlation function. We provide
joint constraints from pulsar accelerations and stellar streams for local and global parameters that describe the
potential of the Milky Way (MW). Our goal is to build an “acceleration ladder,” where direct acceleration
measurements that are currently limited in dynamic range are combined with indirect techniques that can access a
much larger volume of the MW. To constrain the MW potential with stellar streams, we consider the Palomar 5,
Orphan, Nyx, Helmi, and GD1 streams. Of the potential models that we have considered here, the preferred
potential for the streams is a two-component Staeckel potential. We also compare the vertical accelerations from

stellar streams and pulsar timing, defining the function f(z) = qipuisarz — 0—?, where ® is the MW potential
determined from stellar streams and o pysarz is the vertical acceleration determined from pulsar timing
observations. Our analysis indicates that the Oort limit determined from streams is consistently (regardless of the
choice of potential) lower than that determined from pulsar timing observations. The calibration we have derived

here may be used to correct the estimate of the acceleration from stellar streams.
Unified Astronomy Thesaurus concepts: Milky Way mass (1058); Milky Way dynamics (1051); Milky Way dark

CrossMark

matter halo (1049)

1. Introduction

The signatures of tidal interactions between galaxies carry
valuable information about the Galactic potential and the
interaction itself, encoded in the orbital properties of stream
member stars (Johnston et al. 1999; Newberg et al. 2002; Price-
Whelan & Johnston 2013; Sanderson et al. 2015), or in
disturbances in the stream gas (Levine et al. 2006; Weinberg &
Blitz 2006; Chakrabarti & Blitz 2009, 2011; Chakrabarti et al.
2011; Chakrabarti 2013; Craig et al. 2021). Streams (both
stellar and gaseous) have been used to constrain the Milky Way
(MW) halo potential out to large distances (Koposov et al.
2010; Malhan & Ibata 2019; Reino et al. 2021; Vasiliev et al.
2021), and have also been used to constrain dark matter
substructure (Carlberg et al. 2012; Carlberg & Grillmair 2013;
Sanders et al. 2016; Erkal et al. 2017; Bonaca et al. 2019, 2020;
Banik & Bovy 2019).

Recently, extreme-precision time-series observations to
measure Galactic accelerations and the Galactic potential
directly have become feasible. Chakrabarti et al. (2021a)
analysed compiled pulsar timing observations to measure the
Galactic acceleration and derive fundamental Galactic para-
meters, including the Oort limit (the midplane density), the
local dark matter density, and the shape of the Galactic
potential. In the near future, we can expect direct acceleration
measurements from extreme-precision radial velocity observa-
tions (Chakrabarti et al. 2020) and from eclipse timing
(Chakrabarti et al. 2021b). Although direct acceleration
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measurements have provided local constraints on the potential
(Chakrabarti et al. 2021a), they do not yet provide constraints
for the MW’s mass or other global parameters for which we
require information over a large volume. While stellar streams
provide indirect constraints, they add valuable information
about the shape and extent of the MW potential at larger
distances. Here, we explore the idea that combining comple-
mentary information from local acceleration measurements and
tidal streams can be used to build an “acceleration ladder” to
derive constraints on the Galactic potential.

Several methods have been used to extract information about
the Galactic potential from tidal streams. One is to fit an orbit to
a stream based on the observed positions and velocities along
the stream, as done in Newberg et al. (2010) and Koposov et al.
(2010). Agreement between the stream orbits and the data is
potential-dependent, allowing a fitting procedure to be used to
estimate the parameters of the MW potential. There are known
biases in this methodology that result from differences between
the orbits of stream stars and the progenitor (Sanders &
Binney 2013). An alternative method is to back-integrate the
orbits of stream member stars in the MW potential (Price-
Whelan et al. 2014). If these orbits are calculated using an
accurate MW potential, then the member stars should become
bound to the progenitor at some point in their orbital history.
Another common technique is the forward modeling method,
such as the one described in Bonaca et al. (2014), which has
several related variations (Varghese et al. 2011; Sanders 2014;
Fardal et al. 2015). This method uses a Markov Chain Monte
Carlo algorithm that compares simulated streams to observed
streams in 6D phase space.

We focus here on stellar streams rather than gaseous streams
to take advantage of the vast infrastructure that has been
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developed for the collisionless components of galaxies (Binney
& Tremaine 2008), and the better distance estimates that are
available for stars in stellar streams relative to the kinematic
distance estimates that are typically available for the gas
(Levine et al. 2006). We employ the action space clustering
method developed in Sanderson et al. (2015), and later applied
in Reino et al. (2021). In the true potential, stream stars that
were once part of a disrupted dwarf galaxy are expected to be
on similar orbits, and thus have similar positions in action
space. We apply this by searching for the potentials that lead to
the strongest clustering in the actions of stream stars. Since
actions are integrals over one period of the orbit, this method is
similar to the “rewinder” algorithm of Price-Whelan &
Johnston (2013). The analysis of stellar streams by Sanderson
et al. (2017) employs a ‘“consensus fit” whereby multiple
streams provide information on various regions of the MW
potential, allowing the potential model to be valid over larger
parts of the galaxy; another advantage of this approach is that
the consideration of multiple streams leads to a smaller bias
than one stream alone (Bonaca et al. 2014), i.e., due to the
disrupted dwarf galaxy being near pericenter, which can bias
the results (Reino et al. 2022). It has been demonstrated based
on Aquarius simulations that these methods are effective at
recovering the present-day properties of the host galaxy
potential (Sanderson et al. 2017). A limitation of these
techniques is that they do not extend well to models of
potentials that are not in equilibrium or are time-dependent, so
these effects cannot be captured. Our goal is to recover the
present-day properties of the MW potential, as this is what the
direct accelerations probe, so this method works well for our
purposes.

One of the challenges to using tidal streams for measuring
the Galactic potential is obtaining 6D phase-space information
for the member stars. High-quality positions and proper
motions can typically be obtained from Gaia data (Gaia
Collaboration et al. 2016, 2018), significantly expanding the
sample of stars with available information (Bonaca et al. 2014).
To get to full 6D information we also require distances and
radial velocities. For some streams, missing measurements can
be estimated by fitting the distances or radial velocities along a
stream track, then interpolating based on the positions in the
stream. The same method is used in Reino et al. (2021) for the
streams considered here, and for Sagittarius in Vasiliev et al.
(2021).

One of our goals is to use recent direct acceleration
measurements from pulsar timing to calibrate indirect measure-
ments for the potential of the MW. This would in effect serve to
build an “acceleration ladder,” similar to the distance ladder
that is based on the calibration of indirect distance measure-
ments using the basic geometric measurements of distances
obtained from parallax measurements. Direct acceleration
measurements provide the first rung of the ladder, i.e., a “pivot
point” for the Galactic potential, which can be used to calibrate
stream-based potential measurements. In Reino et al. (2021),
only models that matched the circular velocities at the solar
circle to within the uncertainties were considered, where the
measurements of the circular velocities were indirect, while our
pulsar accelerations provide a direct measurement of the
potential. The paper is organized as follows. We present our
methodology in Section 2 and discuss our data selection in
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Section 3. We present our main results in Section 4, and
conclude in Section 5.

2. Methods

We use the Python package GALPY (Bovy 2015) to calculate
the actions for our streams. They are calculated analytically for
the isochrone potential (Binney & Tremaine 2008), and
numerically in all other potentials considered. In spherically
symmetric potentials, like the Hernquist potential, we use
GALPY'’S spherical approximation method, providing accurate
and efficient action calculations. Staeckel potentials allow us to
use Staeckel approximations, providing accurate actions
requiring only a single numerical integral for each action
(Bonaca et al. 2014). For all other potentials, we use the
isochrone approximation method in GALPY. This method uses
an auxiliary isochrone potential with integrated orbits of the
stars in the desired potential to compute the actions. This
requires orbit integration for each star, and is therefore
relatively computationally intensive. However, this provides
more accurate approximations to the actions in these potentials
compared to other methods. In particular, the assumptions
made for the other methods break down when the radial or
vertical actions are of the same order as L, (Bovy 2014).

For each potential model, we tested the accuracy of the
action approximations by calculating the actions of all our
stream members along their orbits for a variety of different
points in the parameter space. We use a leapfrog algorithm to
compute the orbit for at least one orbital period, and then
calculate the actions at regular intervals along the orbit. The
actions should remain constant, and we find that the action
variations are consistently less than 1% in Jg and Jz. When we
use data from multiple streams, we shift the actions in L, for
each individual stream such that there is limited overlap
between streams. This will not impact the clustering in action
space, but helps to avoid error modes with large masses and
low scale lengths (Reino et al. 2021).

As we intend to build upon the results from direct
acceleration measurements from pulsar timing, we consider
the potentials used in Chakrabarti et al. (2021a). Specifically,
we consider the «; potential and the o~y potential. These are
defined in Equations (1) and (2), respectively, where « is the
inverse square of the frequency of low-amplitude vertical
oscillations, Vi gsg is the local standard of rest velocity, and v
describes the shape of the potential. The a; potential provided
the best fit to the pulsar accelerations, and the ay potential is
the “cross-term” model discussed in Chakrabarti et al. (2021a).
These models provide a good match to the measured pulsar
accelerations, however they do not produce strong clustering in
action space. This is expected because these models were
designed to produce reasonable orbits for stars in the solar
neighborhood with low eccentricities and inclinations, which
are not generally satisfied by our stream members (Quillen
et al. 2020).

1
P(R, z) = Vs log(R /R:) + 506112 (1

1
D(R, z) = Visglog(R /R:) + log(R /Ro)v2> + Ealzz. 2
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2.1. KLD

We use the Kullback-Leibler divergence (KLD) to measure
the amount of clustering in action space, as in Sanderson et al.
(2015). The KLD compares two probability denisty functions
(PDFs) to each other. We use it to measure the amount of
action space clustering by comparing the action distribution
with a uniform distribution over the maximum range for each
action across all the data sets (potentials and streams). Larger
KLD values indicate a larger difference between the distribu-
tions, implying that there is more clustering in action space.
Equation (3) defines the KLD for a continuous random variable
from p(x) to g(x), where in our case p(x) will be the action
distribution and ¢g(x) will be our uniform distribution:

KLD log(Z) ax. 3
i) = [pwlogE s 3

We use the kernel density estimator ENBID (Sharma &
Steinmetz 2011) to estimate the PDF for the actions. We define
the resulting distribution for a potential with parameter a as
f.(J), and then we can calculate the KLD from Equation (4).
This integral can be rewritten as in Reino et al. (2021) using a
Monte Carlo approximation to sum across points drawn from
the distribution. This is a natural choice in our case where we
have a discreet set of actions corresponding to our member
stars. The exact form of the calculation used corresponds to the
wKLD1 given in Reino et al. (2021), which includes a weight
term such that the streams contribute equally in joint fits and
can be seen in Equation (5). In this equation, A is the number
of streams in the sample, N; is the number of stars in a stream,
and u(J) is a uniform dlstrlbutlon of actions. Here p(JI(, w) is
the PDF of the actions J with potential parameters ¢ and phase
space postions . This formulation is designed to give each
stream equal weight in the KLLD calculations.

Jo )

1
Diy = sz(f)log(fs,mfg)mv. )
KLD1 - P(J'C w)
wKLD1(¢) = ZZ N N ) 5)

i
Jfl<

For our data set, we use an optimization algorithm to find the
maximum value of the KLD within reasonable bounds. For two
parameter potentials, we apply a simple grid search across the
parameter space. The same grid can be used for the error
analysis technique described in Reino et al. (2021) and
Sanderson et al. (2015), which measures the KLD between
the best-fitting action distribution and the distributions in other
potentials. For potentials with more than two parameters, we
use a differential evolution optimizer implemented in SCIPY
(Virtanen et al. 2020) to maximize the KLD.

2.2. Likelihoods and Error Analysis

We use the two-point correlation function to compute the
likelihood from the action distributions in order to compare
with the pulsar sample. We use the likelihoods from both
methods and combine them to get a joint likelihood function.
The likelihoods for the streams are calculated using the
methods given in Yang et al. (2020). This approach is different
from that used in Reino et al. (2021), chosen here because it
enables the combination of our methods.

We can use the likelihoods to estimate the uncertainties by
examining the relative likelihood (i.e., the likelihood divided
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by the maximum likelihood value) for the parameters that we
are interested in. A confidence region in parameter space can be
defined by setting a threshold on the relative likelihoods
corresponding to the desired confidence interval. We generally
focus on the total mass and Oort limit for the various potentials,
but also compute a surface across all parameters to measure
their uncertainties. We considered using a Fischer matrix
analysis to compute the uncertainties. However, this analysis
underestimates the uncertainties for the streams. The likelihood
surfaces can have multiple local maxima near the maximum
likelihood, corresponding to the best fits of individual streams.
Since the Fisher matrix analysis is based on the derivatives of
the likelihood function, it is only sensitive to regions near the
maximum likelihood, leading to an underestimation of the
uncertainties.

The combined sample (i.e., for pulsars and streams) has a
likelihood surface defined by the product of the two individual
likelihoods, which gives us the relative likelihoods for the
combined sample. In this way we can easily obtain the
uncertainties for both the individual and combined samples
using the same mechanism.

For all the potentials considered except for the o potential,
we examine the total masses and Oort limits for the models. In
cases with more than two parameters we marginalize over the
remaining parameters to produce a two-dimensional likelihood
surface. We expect the streams to produce better constraints on
the total mass, while the pulsars should provide stronger
constraints on the Oort limit. Thus, we expect the combined
sample to provide tighter constraints than either individual
sample.

Note that we do not use a maximum likelihood analysis to
find the best-fitting parameters, instead we maximize the KLLD
as described above. From our likelihood surfaces we have
confirmed that the best-fitting KLD parameters closely agree
with the maximum value of our likelihood surface, so we retain
the best fit identified using the method of Reino et al. (2021).

The equations from Yang et al. (2020) used to calculate the
likelihood are given in Equations (6) and (7). Here D is the
distance between particles in action space normalized by the
standard deviations of all the actions. P(In D) is a probability
distribution describing the distance between stars in action
space, which is computed using Equation (6) and the two-point
correlation function. We set a maximum value of D,,,,, as at
large distances the behavior will change due to an insufficient
number of pairs.

Dnax P(In D)

1+ &nD = —
33 [0 " P(nD)dInD/

(6)

In Dyax
In(L) = Npairs f PnD)In[1 + £(nD)]dInD.  (7)

3. Data Selection

We have considered five different tidal streams—GDI,
Orphan, Palomar 5, Nyx (Necib et al. 2020), and the Helmi
stream (Helmi et al. 1999). We find that for some potentials the
Helmi stream produces large uncertainties, and is not included
in our primary results. Recent work finds that the Helmi stream
provides a constraint for the shape of the inner dark matter halo
of the MW (Dodd et al. 2022), noting that this stream may be in
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Figure 1. Stream and pulsar samples shown in Galactocentric coordinates. This
is the main data set used for the results presented in this paper. The red
diamonds show members of the Palomar 5 stream that are somewhat separated
from the clear stream track in this space.

a resonance. However, if it is truly in a resonance, calculating
actions for typical potentials is not valid, which is consistent
with our findings here. Meanwhile, Zucker et al. (2021) find
that the abundances of likely Nyx stream members are
consistent with the thick disk, and may not have an
extragalactic origin. It does, however, remain plausible that
this is the result of an early minor dwarf galaxy merger (Wang
et al. 2022). Therefore our results are calculated using the Nyx,
GD1, Palomar 5, and Orphan Streams. However, to avoid
contamination if the Nyx stream is actually not extragalactic in
origin, all calculations are also performed without these stars
included. The rest of our data set is similar to that in Reino
et al. (2021), used to reproduce the stream sample and analysis
in Reino et al. (2021) as closely as possible. We have produced
results in our primary potential model that include the Nyx
stream as well. In this potential, the Nyx Stream does not make
a large impact on the derived potential parameters, but does
allow for phase-space overlap between samples. This overlap
allows for better calibrations between the streams and the
pulsar accelerations. The Galactocentric R and Z values of the
stream member stars can be seen in Figure 1.

The Palomar 5 stream here is split into two separate samples,
a main stream group and a set of 11 stars that appear to be
slightly off of the main stream track. To check for any potential
biases induced by the inclusion of these sources, we have
tracked them in the action calculations, and found that they are
not more likely to be outliers in action space than the other
stars. This can be seen from the action distributions shown in
Figure 2. We have also considered the two separate branches
that appear in the Orphan stream data set. All of the analysis
that follows has been performed using each branch separately
in addition to the full sample. Changing the sample does
slightly alter the resulting potential parameters, but at a much
smaller level than the estimated uncertainties. These changes
do not impact the main results of this paper, so we have
retained the full sample here.
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Figure 2. Vertical and radial actions for stars in several streams, computed
using a two-component Staeckel potential. The left panel uses the best-fitting
potential for the streams, with the parameters listed in Table 1. The right panel
shows a distribution that differs from the best-fit potential by roughly 20, based
on our error analysis. As before, the red diamonds indicate the locations of the
members of Palomar 5 that appear to be off the main stream. Interestingly,
these sources are not the main outliers from the central Palomar 5 clump in
action space.

4. Results

Our main results are based on a combination of multiple
streams. A single stream will often produce unrealistic potential
parameters, while the constraints derived from a combination of
streams generates a much more realistic potential (Bonaca et al.
2014; Bonaca & Hogg 2018; Reino et al. 2022). We have
calculated the best-fitting potential for each of our streams
individually, as well as with a combination of streams. This is
repeated across a range of different potential models, as seen in
Table 1. From these results we consider the potential model giving
the largest KLD value to be our best-fitting potential, which in this
case is the two-component Staeckel potential. This can then be
compared with the properties of the potentials that were found to
be a good fit with the pulsar sample. Shown in Figure 2 are the
radial and azimuthal actions of the Palomar 5, GDI1, Nyx, and
Orphan streams in the two-component Staeckel potential, in both
the best-fit potential and a poorly fitting potential.

The results for our combined sample can be seen in Figure 3,
which shows the likelihood surface for the Oort limit and MW
mass using the streams and pulsar timing. We consider both the
o potential, which is the best fit to the pulsars, and the two-
component Staeckel potential, which is the preferred potential
model for the streams.

Interestingly, the streams lead to a lower Oort limit than the
pulsars in every model considered. This is not necessarily
surprising as the streams probe distances out to tens of kiloparsecs,
while the Oort limit is sensitive to the scale height of the disk.
Additionally, Staeckel models do not typically produce a thin disk
as the measured pulsar accelerations indicate (Batsleer &
Dejonghe 1994). They are capable of producing models with
Oort limits that match the pulsar values however. The pulsars
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Figure 3. Likelihood surfaces for the two-component Staeckel and «;
potentials. Included are the stream, pulsar, and combined relative likelihood
surfaces in both potentials. In this case we can see the general trends in the Oort
limit that appear across all of our models, where the streams have a lower value
for the Oort limit along with higher uncertainties.

Table 1
Best-fit Parameters and KLD Values

Potential KLD Best-fit Parameters Procal M, / pc3)
Hernquist 0.95 M=170 x10" M, 0.021 + 0.02
a = 8.66 kpc
ay 022 logo(aq/Gyr™2) = 3.32 0.037 + 0.023
log,o(7/Gyr™2) = —5.52
af 0221  logy(ay/Gyr2) = 3.31 0.036 +0.03
8=-0.16
a 0.224  logo(cu/Gyr=2) = 3.36 0.045 + 0.015
Isochrone 1.07 M =155 x10" M, 0.029 + 0.02
b=11.92kpc
Two-component 1.32 M, =223 x10"* M, 0.026 + 0.02
Staeckel
k=033
Ainner = 18.00 kpc
Aouer = 37.78 kpc
Cinner = 1.95
MWPotential2014 0.53 Bovy (2015) Values 0.101
Best-fit Pulsars logo(cu/Gyr—2) = 3.61 0.0870%

Note. The KLD optimization results are for a number of different potentials
from the GD1, Palomar 5, and Orphan streams. The two-component Staeckel
model provides most clustered actions with a KLD of 1.51. Most of these
results lack the Nyx stream in order to minimize potential contamination. The
two-component Staeckel model includes this data set, however, as it is our
best-fit stream result without the Nyx stream, and the results are only slightly
altered as a result of the inclusion of this data set. This allows for potential
constraints with phase-space overlap with the pulsar sample.

primarily constrain the acceleration in the vertical direction, so we
compare the accelerations from the two methods in the vertical
direction. We can write the difference in the accelerations as the
function specified in Equation (8). A plot of the vertical
accelerations of our preferred models can be seen in Figure 4,
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Figure 4. Vertical accelerations for the pulsars and the streams. The pulsars are
shown in their best-fitting «; potential, while the streams are shown in their
best-fitting two-component Staeckel potential. We show the sample with the
combined stream data set as well as each stream individually.

where o puisar = 40737332* Gyr 2 is the value of oy that is

derived from the measured pulsar accelerations and @ is the best-fit
potential for the streams. Consistent with the lower Oort limit
values, the stream samples yield smaller vertical accelerations.

o®

_— 8
0z ®

f(Z) = O pulsar —

5. Conclusions

1. We analyse clustering in action space to determine the
best-fit potential for a set of stellar streams that have also
been analysed by Reino et al. (2021), with the addition of
the Nyx stream. We compare the derived fundamental
parameters that describe our galaxy from stellar streams
to recent direct acceleration measurements from pulsar
timing (Chakrabarti et al. 2021a).

2. We consider several potential models, including Hern-
quist potentials, isochrone potentials, Staeckel potentials,
and the potentials used in analysing the pulsar sample.
We analyse Staeckel potentials with both one and two
components. The preferred potential for the streams is the
two-component Staeckel model, which is the same model
considered in Reino et al. (2021) and produces the most
clustered actions for our streams.

3. We focus primarily here on the mass of the galaxy and the
Oort limit, where the streams provide stronger constraints on
the mass and the pulsars provide optimal constraints on the
Oort limit. We find that the best-fit potentials for the stellar
streams underestimate the Oort limit compared to the value
derived from the measured accelerations from pulsar timing.
For the potential masses in the two-component Staeckel
model, we obtain  Meams =2.23 £0.75 x 102 M.,
Mpsars = 1.95 £1.3 X 102M., and Mompinea = 1.98 £
0.65 x 10" M, Our estimated Oort limits in this potential
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are  Preams = 0.026 £ 0.02 M pc > and  ppuisars = 0.036 +
0.011 M, pc>. These values can be compared to the Oort
limit of the pulsar’s preferred potential determined from direct
acceleration measurements, which is 0.0875-93M,, pc~3. The
pulsar sample provides better constraints since these local
accelerations are highly dependent on the local density, which
drives the vertical component of the acceleration.

4. The Oort limit obtained from the joint constraints of
streams and pulsars is lower than the Oort limit derived
from pulsars alone, with a value of 0.031%+
0.01 M, pc>. However, pulsars alone do not currently
constrain the mass of the potential, since the pulsars are
distributed within ~1 kpc of the Sun.

5. We provide a fitting formula that may be used to calibrate
vertical accelerations of stellar streams to the measured
pulsar accelerations.
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