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Abstract 
Green fluorescent protein (GFP) is a protein that emits green fluorescence when exposed to a rad-
iation of ultraviolet wavelength range, even without the addition of substrate and cofactor. Be-
cause of such characteristics, the usage of GFP is widespread in both in vivo and in vitro applica-
tions. In addition, recent advances in biotechnology have enabled GFP to be expressed in various 
hosts, including bacteria, yeast, plants, animals, and even living-cells, for multiple purposes. Cur-
rently, GFP is a subject of great interest in the analytical sciences, especially in immunoassays for 
qualitative and quantitative analyses, when it is fused with an antibody because of the high sensi-
tivity of GFP and antigen-binding specificity of antibodies. Recently the fluobody, which is a fusion 
protein of GFP with single-chain variable fragment antibody (scFv), has become a useful tool in 
various fields. We review here the applications of GFP as fluobodies in immunoassays. 
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1. Introduction 
Green fluorescent protein (GFP) was first isolated from the jellyfish Aequorea victoria in the early 1960s [1]. 
The fluorescence spectra of GFP exhibit two absorption peaks at 395 nm and 475 nm (excitation), which indi- 
vidually emitted maximum at 508 nm and 503 nm (emission). The absorption peaks at 395 nm and 475 nm re- 
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sult from two different chromophore species: a neutral protonated form and an anionic deprotonated form, re- 
spectively [2] [3]. The primary structure of GFP was elucidated three decades after its first discovery, and the 
GFP gene was found to encode 238 amino acid residues with a calculated molecular weight of 26,888 Da [4]. 
Thereafter, the use of GFP increased widely and dramatically. The first expression of GFP was successfully 
performed in nematode Caenorhabditis elegans [5], and the results suggested that GFP can be used as a marker 
for gene expression. In 1996, two groups successfully crystallized GFP and found that the protein fold consists 
of an 11-stranded β-barrel with a coaxial helix, with the chromophore forming from the central helix [6] [7]. 
Currently, GFP is an indispensable tool as a reporter gene for the study of gene expression and subcellular loca- 
lization of proteins in plant, bacterial, and mammalian systems [8]-[10]. This widespread use of GFP as a bio- 
logical tool is attributed to three characteristics. First, GFP is highly stable. The fluorescence of GFP is spe- 
cies-independent and remains stable under a wide variety of conditions [11]. Second, GFP maturation requires 
only oxygen [12]. Third, GFP is noninvasive, and therefore the fluorescence can be monitored in living cells, or 
in the entire organism in case of transparent organisms [13].  

Thus far, various applications of GFP in both in vivo direct monitoring of the target protein and in vitro ana- 
lyses have been reported. Fluorescence resonance energy transfer (FRET) is one of the most widely used appli- 
cations of GFP. FRET is the nonradiative exchange of energy from an excited donor fluorophore to an acceptor 
fluorophore within 10 - 100 Å. Because the efficiency of FRET depends on the distance between fluorophores, 
protein-protein interactions can be investigated using this method in vivo and in vitro. GFP can be used as an in-
tercellular molecular sensor in this case. The applications of GFP in FRET have recently been reviewed 
[14]-[18]. The use of GFP has been expanded to photobleaching, which can be used to explore the lateral mobil- 
ity of fluorophores on surface of cells. The fusion of GFP with a target protein makes it possible to investigate 
the protein dynamics within a cell [19]-[21]. Two different types of photobleaching processes can be used to ex- 
plore molecular motion or diffusion: fluorescence recovery after photobleaching (FRAP) and fluorescence loss 
in photobleaching (FLIP). In the FRAP method, a region of interest is bleached once by high-intensity illumina- 
tion, and then recovery of the resultant fluorescence loss is monitored, which reveals the relative mobility of the 
GFP chimera protein [20]. FLIP can be used to study the transport of GFP chimera proteins between different 
organelles. After a region has been repeatedly bleached, the loss of fluorescence in an area away from the 
bleached region is monitored. The FLIP method can be used to confirm FRAP results because the photobleach- 
ing process in FRAP can photo damage the protein of interest and alter its dynamic characteristics, whereas 
FLIP assesses the mobility of fluorescent proteins adjacent to the bleached region [22].  

A fluobody, which is a chimera protein of GFP combined with antibody, has become a useful tool in both in 
vivo and in vitro applications. In in vivo applications, a fluobody can be used to “tag” the target protein by uti- 
lizing binding specificity of an antibody when the fluobody is expressed in a living host. Li et al. recently found 
that the camelid-derived homodimeric heavy-chain antibody (VHH), which is composed of a single-variable 
domain, can across the blood-brain barrier (BBB) without any treatment [23]. The VHH antibodies against the 
astrocyte-specific marker—human glial fibrillary acidic protein (GFAP), were genetically fused with GFP to 
produce a fluobody, and this fluobody was expressed to label the GFAP in murine brain. As a result, the fluo-
body could pass the BBB and label GFAP. This study revealed the ability of the fluobody to be used as a specif-
ic transporter. Another application has been demonstrated in plants [24], where the investigators constructed a 
fluobody directly against phytohormone, which is a precursor of gibberellin (GA24) that regulates growth and 
influences various developmental processes [25]. This fluobody was expressed in Arabidopsis thaliana. The re- 
sults revealed the localization of scFv, which is bound to GA24. In this case, the fluobody was applied as an in 
vivo tool to elucidate the mechanism of the appearance of a GA-deficient phynotype. When the scFv antibody 
targets the cancer-cell receptor, which is associated with cell proliferation, it can be used in molecular targeted 
therapy [26]-[28]. Huang et al. constructed a fluobody against HepG2 hepatocellular carcinoma and injected the 
fluobody into mice to elucidate the localization in HepG2 [29]. The fluorescence derived from the fluobody was 
detected 24 hours after injection, which demonstrates the potential use of fluobodies in in vivo molecular tar- 
geted therapy.  

With respect to in vitro applications, fluobodies have been widely used as probes in immunoassays for qualit- 
ative/quantitative analysis. In an analytical application, a highly sensitive probe is generally required; thus, the 
conjugation between fluorescent labels and antibodies has conventionally been performed by chemical conjuga- 
tion of organic fluorophores [30]; fluorescein isothiocyanate (FITC) is the most commonly employed fluoro- 
phore in various fields. Because FITC can bind to the free amino group of the proteins and peptides to form sta- 
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ble thiourea bond, FITC-labeled antibodies have been used primarily for flow cytometry and immunohisto- 
chemical staining for more than 50 years [31] [32]. This procedure, however, requires a large amount of purified 
protein. Moreover, the fluorophores may bind to the paratope of an antibody, which results in the antibody’s 
partial or complete loss of reactivity. A fluobody can overcome these disadvantages because once the genes are 
constructed in the expression vector, the resultant protein is always expressed in a one-to-one ratio between the 
fluorochrome and scFv. Currently, the usage of fluobodies in vitro has expanded from the immunolabeling of 
cancer cells, fluorescence-activated cell sorter (FACS), and diagnosis, to fluorescent-linked immunosorbent as- 
say (FLISA) for the qualitative/quantitative analyses [33]-[37].  

The in vitro applications of GFP as a fluobody are reviewed in this article. 

2. Applications of Fluobody in Immunoassays 
2.1. Immunolabeling 
The fluobody possesses two characteristics: strong emission intensity and an antibody that binds to a target an- 
tigen. Immunolabeling using fluobodies is convenient method for investigating the subcellular protein and on- 
coprotein in living cells. When the cells are treated with the fluobody and washed, they are ready to be observed 
under a fluorescence microscope. Schwalbach et al. successfully expressed a fluobody against the E6 protein of 
human papillomavirus type 16 (E6 protein) in Escherichia coli (E. coli) and revealed that the subcellular locali- 
zation and movement of E6 protein transfected in COS-7 cell lines [38]. Around the same period, Casey et al. 
expressed a fluobody specific to hepatitis B surface antigen (HepBsAg) in the periplasmic fraction of E. coli and 
revealed that the fluobody retains the functional form to recognize HepBsAg even though it is expressed as a 
periplasmic protein [33]. In addition, a fluobody against a series of cluster of differentiation (CD) antigen [35], 
p24 (human immunodeficiency virus 1) CB4-1 [39], single-chain T-cell receptor (scTCR) [40], and B-cell-ac- 
tivating factor of the TNF family (BAFF) [36] were successfully applied for one-step immunolabeling. More 
recently, a new, multi-colored newly fluobody was suggested by Markiv et al. [41]. They constructed a fluores-
cent antibody, where humanized scFv against p185HER-2-ECD (Trastuzumab, Herceptin, 4D5), which is widely 
used in breast cancer immunotherapy [42], was fused with four kinds of monomeric red, blue, cerulean and ci-
trine fluorescent proteins (RFP, BFP, CER, and CIT, respectively) as bridging molecules. A cell staining study 
using SK-BR-3 breast carcinoma cells revealed that 4D5-RFP and 4D5-CIT were found to specifically recog-
nize p185HER-2-ECD and effectively accumulate on the surface of the cells. Notably, a fluorescent protein other 
than GFP was used as a fluorescent probe. The results of this study open up the possibility of fluobodies that can 
be used in immunolabeling because of the various measurement wavelengths of fluorochrome. 

2.2. Fluorescence-Activated Cell Sorter 
Peipp et al. prepared scFv fused with two fluorescent proteins (GFP and DsRed); the fused product exhibited 
spectral properties that are ideal for dual-color experiments with GFP [35] [43] in which it is applied as a fluo- 
rescence-activated cell sorter (FACS). One common problem frequently encountered with a FACS is the back- 
ground associated with the antigen-independent interaction between the Fc-protein and Fc receptors on various 
cells. These interactions result in a diminished intensity of the specific signal and subsequently cause a decrease 
in the signal-to-noise ratio, which complicates the collection of experimental date [44] [45]. Therefore, Peipp et 
al. used a fluorescent antibody because scFv antibody is composed of minimal variable regions for antigen- 
binding activity without Fc regions. They successfully reduced the background and enhanced the signal-to- 
noise ratio by a factor of 5 - 10 compared with the value obtained using conventional antibodies. Their study 
demonstrates the possible use of fluobodies in FACS, especially when treating with cell populations expressing 
Fc receptors. 

2.3. Fluorescence-Linked Immunosorbent Assay 
FLISA can be used for both large molecules and small molecules [46] [47]. Indirect FLISA (iFLISA) is suitable 
for large molecules such as proteins and peptides, whereas indirect competitive FLISA (icFLISA) is appropriate 
for small molecules such as natural products, agrochemicals, pesticides, and herbicides. The advantages of 
FLISA over the conventional enzyme-linked immunosorbent assay (ELISA) are its rapidity and sensitivity. 
Conventional ELISA using an antibody (i.e., monoclonal antibody, polyclonal antibody, or scFv antibody) re- 
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quires the following five steps, and the assay requires approximately 4.5 hours: 1) fixation of a coated antigen, 2) 
a blocking step to prevent the plate from adsorbing non-specific proteins, 3) the primary antibody reaction, 4) 
the secondary antibody reaction, and 5) the enzyme-substrate reaction. However, in the case of FLISA per- 
formed using a fluobody, the assay is completed within 3 hours because the time-consuming and costly second- 
ary antibody reaction and the subsequent enzyme-substrate reaction can be avoided. In addition, sensitive 
FLISA can be performed by taking advantage of the strong fluorescence intensity of GFP [48]. Up to date, ic- 
FLISA can be developed to detect/determine small molecules, which include picloram [49], s-triazine [50], 
5-methyl 2’-deoxycytidine [51] and bioactive natural product, plumbagin (PL) and ginsenoside Re (GRe) as pre- 
viously described in our group [52]-[54]. The icFLISA for PL and GRe shows a lower limit of determination 
than conventional icELISA. In our study, we assessed the formation of a fluobody has been assessed by con- 
structing two chimera proteins of scFv fused at the C-terminus of GFP (C-fluobody) and the N-terminus of GFP 
(N-fluobody). In both cases, the fluorescence intensity of the C-fluobody was superior to that of the N-fluobody. 
These results are supported by the findings of other groups [33] [51]. The difference in fluorescence intensity 
between the two can be accounted for the flexibility of the linker peptide fusing GFP and the scFv antibody. The 
10 amino acids (30 bp) of the C-terminus of the GFP are well known to be flexible sequence [6] and can func- 
tion as an additional linker in the C-fluobody fusing scFv at the C-terminus of GFP. Because the length of the 
linker peptide of fluobody was designed to contain 10 amino acids of (Gly4Ser)2 encoded by 30 bp, the linker 
sequence of the C-fluobody is equivalent to twice as long as that of the N-fluobody. Our results showed that the 
flexibility of the linker strongly affects the function of GFP in the fluobody.  

Recently, a new type of FLISA has been developed by Ferrara et al. [55]. In their fluobody, scFv was ex- 
pressed with a tag composed of a small domain of GFP (strand 11, residues 215 - 230; GFP11) with retaining its 
antigen-binding activity. The complementary GFP fragment (1 - 10, residues 1 - 214) is expressed separately. 
Neither fragment alone is fluorescent. Only when they are mixed, the small and large GFP fragments sponta- 
neously associate, resulting in reconstitution of the fluorophore and fluorescence. This approach allows both the 
antigen and the scFv concentrations to be determined. 

3. Conclusion 
In this review, the applications of GFP as a fluobody have been described. Although the fluobody was defined 
as a chimera protein of GFP with scFv in this article, variations of fluobodies can be designed for different pur- 
poses. The type of fluorescent protein used can be expanded from GFP to UV, blue, cyan, yellow, orange, and 
red fluorescent proteins. The varieties of known fluorescent proteins have been well reviewed [56]. In addition, 
the antibody can be changed from scFv to fragment antigen-binding (Fab) (~55 kDa), Fab2 (bispecific; ~110 
kDa), Fab3 (trispecific; ~165 kDa), diabody (bispecific; ~50 kDa), triabody (trivalent; ~75 kDa), tetrabody (te-
travalent; ~100 kDa), bis-scFv (bispecific; ~55 kDa), and minibody (bivalent; ~75 kDa) antibodies [57]. These 
combinations, in conjunction with different linker designs, open up the use of fluobodies more in various fields. 
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