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ABSTRACT 

In this study, the multistep method is applied to the STF system. This method has been tested on the STF system, which 
is a three-dimensional system of ODE with quadratic nonlinearities. A computer based Matlab program has been de-
veloped in order to solve the STF system. Stable and unstable position of the system has been analyzed graphically and 
finally a comparison as well as accuracy between two-step sizes with detail. Newton’s method has been applied to show 
the best convergence of this system. 
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1. Introduction 

The distinction between slow and fast dynamos was first 
drawn by Vainshtein & Zeldovich (1972) in this research; 
we describe the stretch-twist-fold (STF) fast dynamo, 
which is the archetype of the elementary models of the 
process. Basically, stretch-twist-fold is applied in fluid 
mechanics in aerospace. In space, any fluid can be D- 
Tracked easily so a magnetic field is required to compel 
the fluid to be in the same orbit and this method is called 
STF system. In this paper, we will investigate the accu-
racy of numerical method. The Multistep method was 
first introduced by Goldstine, Herman H. in the begin-
ning of 1977’s. This iterative method has proven rather 
successful in dealing with various scientific problems 
[1-4] since it provides analytical solutions, which is a 
standard numerical method. This method has also been 
applied to solve nonlinear systems of ordinary differen-
tial equations. For example, H. B. Keller [5] presented an 
extensive comparative study on the accuracy of the 
multistep method and C. Lubich [6] studied the effects of 
time steps on the stiff problem. J. O. Fatokun and I. K. O. 
Ajibola [7] studied multistep method for integrating or-
dinary differential equations on manifolds. Differential 
equations are used to model problems in science and en-
gineering that involve the change of some variables with 
respect to another. Most of their problems require the 
solution to an initial-value problem that is the solution to 
a differential equation that satisfies a given initial condi-
tion. In most real-life situations the differential equation 
that models the problem is too complicated to solve ex- 
actly and one of two approaches is taken to approximate 

the solution. The first approach is to simplify the differ-
ential equation to one that can be solved exactly and then 
use the solution of the simplified equation to approxi-
mate the solution to the original equation. The other ap-
proach, which we will examine in this paper, uses meth-
ods for approximating the solution of the original prob-
lem. This is the approach that is most commonly taken, 
since the approximation methods give more accurate 
results and realistic error information. The objective of 
this research is to solve STF system and test nonlinear 
behavior with different time steps. This modified method 
is able to find a stable and unstable position of STF sys-
tem. This method can also give the exact values after 
iteration results. Newton’s method is able to show the 
best convergence than fixed point iteration method. 

2. Stretch-Twist-Fold Flow (STF) 

The STF flow is defined as 
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where α = 0.1, β = 1 are positive real parameters and re-
lated to the ratios of intensities of the stretch, twist and 
fold ingredients of the flow. 

3. Description of Methods 

The methods we consider in this section do not produce 
a continuous approximation to the solution of the ini-
tial-value problem. Rather, approximations are found at 
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certain specified and often equally spaced points. Some 
method of interpolation is used if intermediate values are 
needed. We need some definitions and results from the 
theory of ordinary differential equations before consid-
ering methods for approximating the solutions to ini-
tial-value problems. 

Definition 3.1: A function  ,f x y  is said to satisfy a 
Lipschtiz condition in the variable y on a set 

  , ,D x y a x b y        

If a constant 0L   exists with the property that 

   , ,f x y f x y L y y     

   , , ,x y x y D   

This first part of this section is concerned with ap-
proximation the solution  y x  to a problem of the form 

 d
, , for

d

y
f x y a x b

x
    

Subject to an initial conditions   0 .y a y  
Lemma 3.1: Suppose that  ,f x y  is continuous on D 

if f satisfies a Lipschitz condition on D in the variable y, 
Then the initial-value problem 
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has a unique solution  y x  for a x b  . 
The methods of Euler and Runge-kutta are called one- 

step methods because the approximation for the mesh 
point 1ix   involves information from only one of the 
previous mesh points ix  although these methods can 
use functional evaluation information at points between 

ix  and 1ix  , they do not retain that information for 
direct use in future approximations. All the information 
used by these methods is obtained within the subinterval 
over which the solution is being approximated. Since the 
approximate solution is available at each of the mesh 
points 0 1, , , ix x x  before the approximation at 1ix   
is obtained and because the error  1 1i iy y x   tends 
to increase with I, it seems reasonable to develop meth-
ods that these more accurate previous data when ap-
proximation the solution at 1ix  . 

Methods using the approximation at more than one 
previous mesh point to determine the approximation at 
the next point are called multistep methods. 

Definition 3.2: An m-step multistep method for solv-
ing the initial-value problem (3.1) is one whose differ-
ence equation for finding the approximation 1iy  . 

At the mesh point 1ix   can be represented by the 
following equation, 
where p is an integer greater than 0 
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When b–1 = 0 then the method is called explicit or 
open. Since Equation (A) then gives 1iy   explicitly in 
terms of previously determine values. When 1 0b   
then the method is called implicit or closed. Since 1iy   
occurs on both sides of Equation (A) and is specified 
only implicitly. 

To begin the derivation of the multistep methods, note 
that the solution to the initial-value problem (3.1), if in-
tegrated over the interval  1,i ix x   has the property that 

      1

1 , di

i

x

i i x
y x y x f x y x x

           (B) 

Since we cannot integrate   ,f x y x  without know- 
ing  y x  the solution to the problem, we instead inte-
grate an interpolating  L x  to   ,f x y x  that is de-
termined by some of the previously obtained data points 
     0 0 1 1, , , , , ,i ix y x y x y  Equation (B) becomes 

   1 di

i

x

i i x
y x y L x x    

3.1. Modified Method 

Use the modified APC method to solve STF system. This 
method is derived from ABF-Explicit m-step technique 
and AM-Implicit m-step technique. The simulation done 
of this paper is for the time range  0,1t  with two 
time steps 0.01t   and 0.001t  . 

Represented formula: 

 1 1 1 2 2 3 3 4 4n ny y h b g b g b g b g       

 1 4 5 5 1 6 2 7 3n ny y h b g b g b g b g       

where, 
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3.2. Unstable Position 

When α = 1, β = 0.1 and h = 0.01 then we can determine 
the unstable position of the system that is shown in Ta-
ble 1 and easily analyzed by the Figure 1. 

3.3. Stable Position 

When α = 0.1, β = 1 and h = 0.001 then we can determine 
the stable position of the system that is shown in Table 2 
and easily analyzed by the Figure 2. 
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Table 1. X, Y, Z-Direction for β = 0.1. 

T ∆x ∆y ∆z 

0 0 0 0 

0.1 0.0533 0.5102 0.0081 

0.2 0.0801 0.8065 0.0210 

0.3 0.0947 0.8007 0.0386 

0.4 0.1035 0.7961 0.0605 

0.5 0.1097 0.7909 0.0863 

0.6 0.1147 0.7854 0.1155 

0.7 0.1191 0.7796 0.1473 

0.8 0.1233 0.7734 0.1811 

0.9 0.1275 0.7670 0.2158 

1 0.1319 0.7602 0.2507 
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Figure 1. The unstable position of the system when α = 1, β 
= 0.1 and h = 0.01. 

 
Table 2. X, Y, Z-Direction for β = 1. 

T ∆x ∆y ∆z 

0 0 0 0 

0.1 0.0051 0.0508 0.0001 

0.2 0.0100 0.1013 0.0004 

0.3 0.0146 0.1511 0.0004 

0.4 0.0190 0.1998 0.0006 

0.5 0.0232 0.2472 0.0009 

0.6 0.0271 0.2929 0.0012 

0.7 0.0309 0.3367 0.0016 

0.8 0.0345 0.3785 0.0021 

0.9 0.0379 0.4180 0.0025 

1 0.0411 0.4551 0.0031 
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Figure 2. The stable position of the system when α = 0.1, β = 
1 and h = 0.001. 

4. Fixed Points for Function of Several  
Variables 

In this section, we will discuss about fixed point iteration 
method and Newton’s method. 

A system of nonlinear equations has the form 
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Here each function fi can be thought of as mapping a 
vector  T

1 2, , , nx x x x  of n-dimensional space Rn into 
the real line R. 

The system of n nonlinear equations in n unknowns 
can alternatively be represented by defining a function f, 
mapping Rn into Rn by  T

1 2, , , .nf f f f   
Then we have 

  0f x   

In an iterative process for solving an equation 
  0f x   was developed by transforming the equation 

into one of the form  x g x . The function g is defined 
to have fixed points precisely at solutions to the original 
equation. A similar procedure will be investigated for 
function from Rn to Rn. 

Definition 4.1: A function g from nD R  into Rn 
has a fixed point at x D   if   .g x x   

Consider the STF system (see Figure 3): 
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(a) x-y-z 

 
(b) x-y 

 
(c) y-z 

Figure 3. Portrait and x, y, z direction of STF system. 

To approximate the fixed point x  we choose  
 T0 0.3,0.2, 0.1x    the sequence of vectors generated 

by 
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If k = 1, 2, 3, 4 then 

 
 
 

T1

T2

T3

0.00625,0.82664,0.22500

0.00340,0.99136,0.003503

0.00004,0.99998,0.00187

x

x

x







 

 1 30.62664,0.221497,8.6 10k kx x     

Now we have tested this system in Newton’s method 
and comparison with fixed point iteration results. 

Newton’s method for systems, like the one-dimen- 
sional Newton’s method, a fixed point iteration based on 
a linearization of  .f x  If : nf R R  then the Tay-
lor series for  f x  has the form 

        k k kf x f x J x x x E x     

Newton’s method is derived just as it was for the 
one-dimensional case: neglecting the remainder term, we 
have 

      k k kf x f x J x x x    

And setting   0f x   gives what we hope is an im-
proved estimate 

     0k kf x J x x x    

If   det 0,kJ x   the iteration 

   1
1 , 0,1,2,k k k kx x J x f x k


        

This is Newton’s method for systems. 

Where,   1
kJ x


 
   is the inverse of  J x . 

In practice it is preferable to solve  k kJ x x   
 kf x  for kx  and then add this quantity to kx  we 

have 
1k k kx x x     

where 
1k k kx x x    

By system (C), the Jacobi matrix  J x  for this sys-
tem is 
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Table 3. Convergence rate of STF. 

k 1
kx  2

kx  3
kx  

1k kx x 

0 0.3 0.2 –0.1  

1 0.007523 0.00430 0.00005 2.9 × 10–1 

2 0.962467 0.10136 0.10002 9.5 × 10–1 

3 0.338002 0.00450 0.00258 6.2 × 10–1 

 

 
2 1

1 3 3 1

2 3 1 2

8 8 0.1

22 6 2

0.1 2 2

x x

J x x x x x

x x x x

  
    
    

 

The results are given in Table 3. 
According to previous examples, we can easily ana-

lyze that Newton’s method is more accurate than fixed 
point iteration method. 

5. Conclusion 

In this paper, MATLAB programming has been used to 
solve the STF system with variable time steps (∆t = 0.01, 
0.001). We have obtained good results by using two 
methods applied to the STF system concerning the sys-
tem is stable and unstable state. The modified method 
was computed by developing simple algorithm without 
perturbation techniques i.e. linearization or discretization. 
In all the considered cases, it has been proved that the 
modified multistep method appears to be the best method 
to approximate this solution based on its accuracy and 
Newton’s method is a good example to solve root finding 
problem in STF system. Newton’s method is able to 
show the best convergence than fixed point iteration 
method. 
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