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ABSTRACT 

The effects of residual stress on the hydro-elastic vibration of circular diaphragm are theoretically investigated by using 
the added mass approach. The Kirchhoff theory of plates is used to model the elastic thin circular diaphragm on an ap-
erture of an infinite rigid wall and in contact with a fluid on one side. The fluid is assumed to be incompressible and 
inviscid and the velocity potential is used to describe its irrotational motion. A non-dimensional tension parameter is 
defined, and the effects of the tension parameter on the frequency parameters and mode shapes of the diaphragm in the 
air are presented. The Hankel transform is applied to solve the fluid-diaphragm coupled system; boundary conditions 
are expressed by integral equations. Finally, the effects of residual stress on the non-dimensional added virtual mass 
incremental (NAVMI) factors of the diaphragm contact with a fluid on one side are investigated. It is found that the 
effects of the residual stress cannot be neglected when the edges of the circular diaphragm are clamped. The effects of 
residual stress for NAVMI factors can be increases 11% when the non-dimensional tension parameter is 1000. 
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1. Introduction 

Micro-machined diaphragm structures are extensively 
used in micro-electromechanical systems (MEMS) as 
biosensors in air and in liquid media [1-5]. These sensors 
are excited by electro-static force so that they vibrate at 
their resonance frequency. When a biological entity is 
captured by an electrode of biosensor, the resonant fre-
quency will change. The capture mass can be measured 
by detection of the resonant frequency shift. On the fab-
rications of these multilayer micro-diaphragms, a certain 
amount of residual stress will be developed for a variety 
of reasons [6-9]. The residual stress bend the micro-dia- 
phragm downward or upward depending on whether the 
residual stress is tensile or compressive. Moreover, the 
residual stress is an important influencing factor for the 
resonant frequency and sensitivity of the biosensors. Sev-
eral researchers investigated the effects of residual stress 
on the diaphragm’s resonant frequency, either theoreti-
cally or by finite element analysis [10-12]. They con-
cluded that residual stress stiffens the diaphragm and 
increases its resonant frequency. But, the vibration char-
acteristics of the diaphragm in fluid media don’t studied. 

The fluid structure interaction problems of plate struc-
tures partially or totally immersed in fluid have also re-
ceived much attention due to their importance. Kwak [13] 
and Amabili et al. [14] investigated the effect of fluid on  

the natural frequencies of circular plates vibrating in 
contact with an infinite liquid surface. Amabili and Kwak 
[15] investigated the effect of free-surface waves on free 
vibrations of circular plates resting on a free surface of 
infinite liquid domain. Amabili et al. [16] and Liang et al. 
[17] gave the natural frequencies of annular plates on an 
aperture of an infinite rigid wall and in contact with a 
fluid on one side. Bauer [18] presented the coupled hy-
dro-elastic frequencies of a liquid in a circular cylindrical 
rigid container, of which the free liquid surface was fully 
covered by a flexible membrane or an elastic circular 
plate. Bauer and Chiba [19] extended the study of Bauer 
[18] to the structure filled with incompressible viscous 
liquid. Amabili [20] studied the free vibrations of circular 
plates resting on a sloshing liquid free surface; the liquid 
domain was limited by a rigid cylindrical surface and a 
rigid flat bottom. When the biosensors are used in liquid 
media, the effect of the fluid on the diaphragm must be 
investigated [21,22]. However, the residual stress was 
neglected in these studies. 

The objective of the present paper is to investigate the 
effects of residual stress on the hydro-elastic vibration of 
circular diaphragm. The Kirchhoff theory of plates is 
used to model the elastic thin circular diaphragm. The 
governing equation of a circular diaphragm with the re-
sidual stress is obtained in Section 2. A non-dimensional 
tension parameter is defined, and the effects of the ten- 
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sion parameter on the frequency parameters and mode 
shapes of the diaphragm in the air are presented. The 
fluid is assumed to be incompressible and inviscid and 
the velocity potential is used to describe its irrotational 
motion. The fluid formulation of the circular diaphragm 
is obtained in Section 3. In Section 4, the effects of re-
sidual stress on the frequency parameters, the mode 
shapes and the non-dimensional added virtual mass in-
cremental (NAVMI) factors of the diaphragm contact 
with a fluid on one side are investigated. Finally, Section 
5 gives concluding remarks. 

2. Equation for Circular Diaphragm with 
Residual Stress 

Consider a thin circular diaphragm having thickness h, 
mass density D, radius a, initial tension of the dia-
phragm per unit of length T due to the residual stress, 
which is vibrating in vacuum, as sketched in Figure 1. 
The diaphragm is also assumed to be made of linearly 
elastic, homogeneous and isotropic material. The effects 
of shear deformation and rotary inertia are neglected. The 
Kirchhoff theory of plates is used to model the elastic 
thin circular diaphragm. 

For a circular diaphragm with initial tension, the equa-
tion of motion for transverse displacement, w, of the 
diaphragm is [23] 

2
4 2

D 2
0

w
D w T w h

t
 

    


          (1) 

where  3 212 1D Eh    is the flexural rigidity of the 
diaphragm,  is the Poisson ratio of the material, E is the 
Young’s modulus of the material.  0 1T h   is the 
tension force of the diaphragm per unit of length due to 
the residual stress, 0 is the residual stress. In addition 
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            (2) 

is the Laplace operator in the polar co-ordinates r and . 
For vibration analysis of the circular diaphragm in 

vacuum, the transverse displacement w is assumed as 

    i

0 0

, , , e mnt
mn

n m

w r t W r  
 

 

          (3) 

in which m and n are the numbers of nodal diameters and 
circles. Substituting Equation (3) into Equation (1), we 

 

 

Figure 1. Schematic of a circular diaphragm with the initial 
tension. 

obtain 
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where mn and mn are the frequency parameters which 
are determined by the boundary conditions, which satisfy 
the following equation 
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where  is a non-dimensional tension parameter which is 
to determined whether the diaphragm is tension domi-
nated for the pure membrane behavior or flexural rigidity 
dominated for the pure plate behavior. After substituting 
Equation (6) into Equation (5), we obtain 
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The Equation (4) is satisfied when the solutions of the 
following equations are satisfied 

   2 2 2 20, 0mn mn mn mnW W           (8) 

It is possible to separate variables by substituting 

     , cosmn mnW r R r m           (9) 

Substituting Equation (9) into Equation (8), then we 
obtain 
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Equations (10) and (11) are Bessel’s equations of frac-
tional order. The solutions can be expressed as a series 
form. The solution of Equation (10) is in terms of Bessel 
functions of the first and second kind, Jm (mnr) and Ym 
(mnr). The solution of Equation (11) is in terms of 
modified Bessel functions of the first and second kind, Im 
(mnr) and Km (mnr). 

For the general solution of circular diaphragm, the so-
lution Rmn (r) is obtained 
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in which Amn, Bmn, Cmn and Dmn are the mode shape con-
stants that are determined by the boundary conditions. 
Both Ym (mnr) and Km (mnr) are singular at r = 0. Thus, 
for a diaphragm with no central hole, we set Bmn = Dmn = 
0. The Equation (12) becomes 

     mn mn m mn mn m mnR r A J r C I r       (13) 

Substituting Equation (13) into Equation (9), we ob-
tain the mode shape as follows 

       , cosmn mn m mn mn m mnW r A J r C I r m       (14) 

To simplify the computation, the mode shape con-
stants Amn and Cmn are normalized so that 

 1 2

0
d 1mnR                  (15) 

where r a   is the ratio between the radius r and the 
maximum radius a. 

3. Fluid Formulation 

We consider the free vibrations of the circular diaphragm 
placed in an aperture of an infinite rigid wall and in con-
tact with a fluid on one side. The mode shapes of the 
diaphragm vibrating in constant with a fluid are assumed 
to be equal to those of the diaphragm vibrating in a vac-
uum. This hypothesis was also used to study vibrations 
of circular plates in contact with fluids [13-17]. In fact, 
although natural frequencies are considerably reduced by 
the presence of a fluid, mode shapes undergo only small 
changes. We study the velocity potential of an incom-
pressible and inviscid fluid in contact with a circular 
diaphragm on one side. The fluid movement, considered 
only due to the diaphragm’s vibration, is assumed to be 
irrotational. This movement can be described by the ve-
locity potential 

    i, , , Re , , i e mnt
mnr z t r z           (16) 

where  is the spatial distribution of the velocity poten-
tial, mn  is the circular frequency of the diaphragm in 
contact with fluid. As a consequence of the hypotheses,  
(r, , z) satisfies the Laplace equation 
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where F represents the unbounded fluid domain. The 
fluid is in contact with the diaphragm through the surface 
denoted by S1 and in contact with an infinite rigid wall 
through the surface denoted by S2, as sketches Figure 2. 
Due to the fluid domain is unbounded, the surface S 
exists at infinity. 

 

Figure 2. The circular diaphragm and the fluid domain. 
 

As assumed in the hypotheses, the diaphragm mode 
shapes in a vacuum and in fluids are unchanged, there-
fore, the displacement w obtained from Equation (3) is 
imposed at the fluid-plate interface. The contact between 
the fluid and diaphragm is assured by the equation [13,14] 

    1cos onz mnv R r m S
z

 
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
    (18) 

The condition of an impermeable rigid wall on S2 is 

20 on S
z





             (19) 

Equations (18) and (19) give a Neumann problem. 
Moreover, there is the radiation condition that the spatial 
velocity potential  and the velocity of the fluid go to 
zero when the distance from the diaphragm becomes 
very large [13,14] 
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Equation (17) can be simplified by separation of vari-
ables 
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The boundary conditions for  are directly obtained 
from Equations (18)-(20) as 
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Using the Hankel transformation [24], we obtain the 
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relation 
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By integrating by parts, we can derive the relation 
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At the same time, we have for the third term of Equa-
tion (22) 
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Using Equations (27) and (28) reduces the partial dif-
ferential Equation (22) to the ordinary differential equation 
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Boundary condition Equation (25) requires that the 
solution of Equation (29) consists of the attenuating part 
only 

   , e 0zz B a z           (30) 

where B (a) is a function that must be determined. From 
the inversion formula for the Hankel transformation 
along with Equation (30), we obtain 

     

   
0

0

, , d

e d

m

z
m

r z z J r

B a J r

   

   



 

  






      (31) 

Inserting Equation (31) into the boundary condition 
Equations (23) and (24) give 
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Introducing the non-dimensional variables as 
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The integral Equations (32) and (33) can be written in 
the following standard form 
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where 

     mn mn m mn mn m mnR A J a C I a        (37) 

The solution of the integral Equations (35) and (36), 
can be obtained by using the properties of the Hankel 

transform [24]. In fact, since the Equation (36) is equal to 
zero, we obtain 
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in which [25] 
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Inserting Equation (38) into Equation (31) and using 
Equation (34), we obtain the function  at the fluid-plate 
interface 
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         (42) 

Using the Rayleigh quotient for the coupled vibrations, 
the squares of the natural frequencies of the diaphragm in 
a vacuum are proportional to the ratio between the 
maximum potential energy of the diaphragm VD and its 
kinetic energy TD [26]. Due to the mode shapes of the 
diaphragm vibration in constant with a fluid are assumed 
to be equal to those of the diaphragm vibration in a vac-
uum, the squares of the natural frequencies in fluid are 
proportional to the ratio between the maximum potential 
energy of the diaphragm VD and the sum of the kinetic 
energies of both the diaphragm TD and the fluid TF. 
Therefore, we can obtain 
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Since the mode shapes in a vacuum and in fluids are 
assumed to be the same, the maximum potential energies 
VD and the kinetic energy TD are not changed when 
evaluated in vacuum or in fluids. By using Equations (43) 
and (44), the following relation between natural frequen-
cies in a vacuum fV and natural frequencies in fluids fF is 
obtained 

1
V

F

mn

f
f





            (45) 

where mn is the added virtual mass incremental (AVMI) 
factor [13,14]. This factor is given by the ratio between 
the kinetic energy of the fluids and the kinetic energy of 
the diaphragm 
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The AVMI factor can be made dimensionless 

F
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where F and D are the fluid’s and diaphragm’s mass 
density, respectively, and mn is the non-dimensionalized 
added virtual mass incremental (NAVMI) factor [15-17]. 
Therefore, natural frequencies of a circular diaphragm 
vibrating in contact with a fluid are related to the modal 
properties of vibration in a vacuum. 

By using the hypothesis of irrotational movement of 
the fluid and simple connection of the fluid domain, the 
kinetic energy of the fluid can be evaluated from its 
boundary motion [13-17]. In fact, as a consequence of 
Green’s Theorem applied to the harmonic function , we 
obtain 
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The function z   is always zero on the boundary 
of the fluid domain, except for the surface in contact with 
the plate, therefore Equation (48) reduces to 
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where  = 2 for m = 0,  =  for m > 0. Upon substi-
tuting Equation (42) into Equation (49) and using Equa-
tion (38), the result is found to be 
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The kinetic energy of the circular diaphragm is 
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Integration with respect to , and using the normaliza-
tion criterion Equation (15), then we obtain 
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By using Equations (46), (47), (50) and (52), the 
NAVMI factors are found to be given by 
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This quantity must be evaluated numerically, because 
the integral cannot be expressed in terms of elementary 

functions. However, upon inserting the modal parameters 
mn, mn, Amn and Cmn, the NAVMI factors can be quickly 
computed. 

4. Numerical Results and Discussion 

4.1. Numerical Results 

To illustrate the effects of the residual stress, the fre-
quency parameters, mna, the mode shapes and the non- 
dimensional added virtual mass incremental (NAVMI) 
factors are been studied for the circular diaphragm with 
the clamped edge. For the circular diaphragm with clamped 
edge, the boundary conditions are 

0, 0 onmn
mn

W
W r a

r


  


        (54) 

Using Equation (14) and Equation (54), we obtain 

   
   1 1

0

0

mn m mn mn m mn

mn mn m mn mn mn m mn

A J a C I a

A J a C I a

 

    

  


   
  (55) 

Due to Equation (55) has non-zero solution, the coef-
ficient determinant of Equation (55) must be zero, which 
gives 

   
   1 1

0m mn m mn

mn m mn mn m mn

J a I a

J a I a

 
    




    (56) 

The characteristic equation of the circular diaphragm 
with clamped edge can be obtained 

   
   

1

1 0

mn m mn m mn

mn m mn m mn

aJ a I a

aI a J a

  

  


 
       (57) 

Using Equations (6) and Equation (57), the accurate 
frequency parameters, mna, of the circular diaphragm 
with clamped edge can be determined. 

To find the mode shapes, we formulate from Equation 
(55) 

 
 

m mn
mn mn

m mn

J a
C A

I a




             (58) 

This gives the mode shapes expression 

   
     cosm mn

mn mn m mn m mn
m mn

J a
W A J r I r m

I a


  


 

  
  

(59) 

Setting Equation (59) equals to zero defines the node 
lines. It turns out that there will be concentric circles and 
diametrical lines. The number of concentric circles will 
be n and the number of diametrical lines will be m. 

For illustration purpose, the circular diaphragm con-
sidered here is taken to be made of silicon with the fol-
lowing material properties: E = 170 GPa,  = 0.3. The 
frequency parameters, (mna), are available for circular 
plates which were given by Vogel and Skinner [27] and 
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for circular membranes which were given by E. C. Wente 
[28]. We have computed the frequency parameters and 
mode shapes in order to provide more accurate results. 
The frequency parameters can be obtained by the Equa-
tion (57) and the mode shapes can be obtained by Equa-
tion (59). The roots of these equations were found by 
using the software Fortran95. 

4.2. Discussion of Results 

In Table 1, the frequency parameters, (mna), for the 
circular diaphragm with the clamped edge are reported 
for the different non-dimensional tension parameter (). 
When the non-dimensional tension parameter is zero, the 
diaphragm model is reduced to the plate [27]. It is found 
the results are the same with the circular plates when the 
tension parameter is zero. When the non-dimensional 
tension parameter is infinite, the diaphragm model is 
reduced to the membrane [28]. The frequency parameters 
are the same with the circular membranes. It indicates 
that the present model is valid for the diaphragm with the 
clamped edge. 

In Figure 3, the frequency parameters of the four dif-
ferent models for the circular diaphragms with clamped 
edges are investigated. It is clearly seen that the frequen-
cies parameters decreases rapidly with the increasing 
value of the non-dimensional tension parameter. When 
the tension parameter is very small, the frequency pa-
rameters close to the results of the plates. 

 
Table 1. Comparison of frequency parameters, (mna), for 
circular diaphragms with clamped edge,  = 0.3. 

Present work 

plates diaphragm m n 
Plates 

Vogel et al. 
[27]  = 0  = 102  = 104 

Membrane 
E. C.Wente [28]

0 0 3.19622 3.19622 2.65624 2.42910 2.40483 

0 1 6.30644 6.30644 5.99518 5.57569 5.52008 

1 0 4.61090 4.61090 4.20075 3.87036 3.83171 

1 1 7.79927 7.79927 7.55770 7.08615 7.01559 

 

 

Figure 3. Frequency parameters of the clamped circular 
diaphragm as function of the tension parameter. m, n values: 
, 0, 0; �, 1, 0; , 0, 1; , 1, 1. 

When the tension parameter is very larger, the fre-
quency parameters close to the results of the membranes. 
Therefore, the vibration of a diaphragm structure depends 
on whether the structure behaves as a tension dominated 
membrane or a flexural rigidity dominated plate. 

In Figure 4, the first mode shapes of the circular dia-
phragm with clamped edges for the different non-di- 
mensional tension parameters are investigated. Mode 
shapes with zero nodal diameters (m = 0), zero nodal 
circles (n = 0) and  = 0.3 are assumed. It is clearly ob-
served from Figure 4 that the normalized maximum am-
plitude of the first mode shape by the present model is 
about 3.31 when the non-dimensional tension parameter 
is equal to 0. However, the normalized maximum ampli-
tude of the first mode shape by the present model is 
about 2.75 when the non-dimensional tension parameter 
is equal to 10,000. The normalized maximum amplitude 
by the present model when the non-dimensional tension 
parameter is equal to 10,000 decreases approximately 17 
percent than that predicted by the plate model. 

In Figure 5, the second mode shapes of the circular 
diaphragms with clamped edges for the different non- 
dimensional tension parameters are investigated. It is 
clearly observed from Figure 5 that the normalized  

 

 

Figure 4. Mode shapes comparison of circular diaphragm 
for different tension parameter. 

 

 

Figure 5. A comparison of mode shapes of circular dia-
phragm for different tension parameters. 
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maximum amplitude of the second mode shape by the 
present model is about 4.43 when the non-dimensional 
tension parameter is equal to 0. However, the normalized 
maximum amplitude of the second mode shape by the 
present model is about 4.20 when the non-dimensional 
tension parameter is equal to 10000. The normalized 
maximum amplitude by the present model when the non- 
dimensional tension parameter is equal to 10000 de-
creases approximately 5.2 percent than that predicted by 
the plate model. Therefore, it is insufficient that the fre-
quency parameters and the mode shapes of the circular 
diaphragm with the clamped edges are predicted when 
the tension due to the residual stress is neglected. 

The NAVMI factors, mn, are obtained by numerical 
integration of Equation (53). These factors, for clamped 
circular diaphragms having the non-dimensional tension 
parameters  equal to 0, 10, 100, 1000 and 10000, are 
given in Table 2 with six frequency parameters for m 
and n. When the non-dimensional tension parameter goes 
to zero, the diaphragm with the clamped edge becomes a 
clamped plate. Table 2 is shown to give a comparison 
between numerical results obtained by the present model 
and the results of the Amabili [16] for circular plates. 
Differences are always less than 1%; the error can be 
attributed to the accuracy of the calculation. It indicates 
that the present model is valid. Therefore, for the differ-
ent non-dimensional tension parameters, the NAVMI 
factors, mn, are different. It is clearly observed from 
Table 2 that the NAVMI factors are increase for the fre-
quency parameter n = 0, however, the NAVNI factors are 
decrease for the frequency parameter n > 0 when the 
non-dimensional tension parameters is smaller than 1000. 
The NAVMI factors of Table 2 are presented in Figure 
6 in a graph as a function of the non-dimensional tension 
parameter. 

It is clearly observed from Figure 6 that not all modes 
have a monotonic behavior with the non-dimensional 
tension parameter; moreover, the fundamental mode, (m 
= 0, n = 0), shows the largest change with the non-di- 
mensional tension parameter. The NAVMI factor for the 
fundamental mode increases approximately 11% when 
the non-dimensional tension parameter is equal to 1000.  

 
Table 2. Comparison of NAVMI factors, mn, for circular 
diaphragms with clamped edge,  = 0.3. 

Present work 

plates diaphragms m n 
Amabili [18] 

plates 
 = 0  = 100  = 102  = 104

0 0 0.65381 0.65394 0.65493 0.69337 0.73936

0 1 0.27613 0.27617 0.27553 0.25751 0.25934

0 2 0.16513 0.16515 0.16496 0.15578 0.15097

1 0 0.29883 0.29883 0.29903 0.30914 0.32696

1 1 0.16914 0.16913 0.16903 0.16566 0.16872

1 2 0.11591 0.11591 0.11586 0.11337 0.11271

 

Figure 6. NAVMI factors of the clamped circular dia-
phragm as function of the tension parameter. m, n values: 
, 0, 0; �, 1, 0; , 0, 1; , 1, 1. 

 
However, the NAVMI factor for the mode with m = 0 
and n = 1 decrease approximately 7.3% when the non- 
dimensional tension parameter is equal to 1000. There-
fore, the residual stress must be considered when we 
calculate the NAVMI factors of the clamped circular 
diaphragms. 

5. Conclusion 

The effects of residual stress on the hydro-elastic vibra-
tion of circular diaphragm are theoretically investigated 
by using the added mass approach. The Kirchhoff theory 
of plates is used to model the elastic thin circular dia-
phragm on an aperture of an infinite rigid wall and in 
contact with a fluid on one side. The fluid is assumed to 
be incompressible and inviscid and the velocity potential 
is be used to describe its irrotational motion. It is as-
sumed that the mode shapes are not changed by the fluid. 
The Hankel transform is applied to solve the fluid-dia- 
phragm coupled system; boundary conditions are ex-
pressed by integral equations. Finally, the effects of re-
sidual stress on the non-dimensional added virtual mass 
incremental (NAVMI) factors of the diaphragm contact 
with a fluid on one side are investigated. It is found that 
the effects of the residual stress cannot be neglected 
when the boundary conditions of the circular diaphragm 
is clamped. The effects of residual stress for NAVMI 
factors can be increased 11% when the non-dimensional 
tension parameter is 1000. The importance of these fac-
tors is that they are dimensionless, so that they can be 
applied to circular diaphragm with different dimensions 
and material, therefore the numerical data given in pre-
sent paper can be quickly used for the design of mi-
cro-diaphragm in MEMS. 
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