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ABSTRACT 

The paper in the introductory part reviews various definitions and interpretations of structural redundancy in mechanics. 
The study focuses on the general structural redundancy of systems after sequences of component failures followed by 
possible load redistributions. The second section briefly summarizes the Event Oriented System Analysis and structural 
redundancy in terms of the conditional probabilistic entropy. Mechanical responses to adverse loads in this approach are 
represented by random operational and failure events in the lifetime. The general redundancy measure in the third sec-
tion of the paper employs the information entropy and goes beyond existing formulations since it includes all functional 
modes in service. The paper continues with a summary of traditional redundancy indices. In addition, it proposes an 
alternative redundancy index that accounts for the transition to secondary functional level in case of failures of primary 
components. The example of a ship structure illustrates the usage of the conditional entropy of subsystems of opera-
tional events and compares it to the traditional and newly proposed redundancy indices. The study at the end investi-
gates how to enhance the safety of structures by using the redundancy based design. 
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1. Introduction 

Complex load-carrying engineering structures share a 
number of properties that relate to the overall structural 
safety. The definitions, applications and mathematical 
interpretations of important properties such as redun-
dancy, robustness and vulnerability are still vague in dif-
ferent engineering disciplines [1-5]. Although those prop- 
erties have been extensively investigated [6-9], the me- 
chanical and structural redundancy has been one most 
difficult to quantify. It is usually classified into local and 
global (overall) redundancy and can be expressed in two 
forms, as the system reserve strength and the residual 
strength [10,11]. Reserve strength is the margin between 
the design load and the ultimate capacity of the overall 
structure to sustain the applied load. 

The redundancy of complex engineering systems is 
commonly related to residual strength that remains in the 
structure after one or more components have failed [11, 
12]. Descriptive redundancy assessment is characterized 
by a number of functional levels and by a number of al- 
ternative operational states. Mere deterministic measures, 
denoted as structural residual resistance factors and re- 
dundant factors which relate the strength of the intact and 

damaged structures, are considered as insufficient for 
problems of system redundancy. 

The structural engineering for the sake of efficiency 
often focuses on “fail-safe” or “damage-tolerant” object 
that remain operational in the case of the first component 
failure. Redundancy in engineering systems in this paper 
is assessed as a general probabilistic operational abun- 
dance rather than deterministic survival ability in the 
case of first component failure. In complex structures 
with large number of interacting components possibly in 
different uncertain states, the redundancy becomes a sig- 
nificant issue in investigation of general system safety. 

The study examines the benefits of combining the 
probabilistic reliability methods and the event oriented 
system analysis of structural redundancy using the same 
set of input data. EOSA relates the system redundancy to 
the conditional entropy of subsystems of failure events. 
Entropy as a measure of information primarily originates 
from the information theory [13,14] and lately is gener- 
alized as an uncertainty measure in probability theory 
[15,16]. The unconditional information entropy has not 
been considered as yet as a useful measure of practical 
importance for structural systems in engineering. 

However, the concept of conditional entropy in the 
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probability theory represents an objective uncertainty 
measure for systems of events independent of anything 
else but possible events [17]. The redundancy defined by 
conditional entropy of failure path is found useful in as- 
sessment of lifeline systems efficiency in damaged con- 
ditions [18]. Therefore, the paper compares alternative 
definitions of the probabilistic redundancy indices to the 
entropy-based probabilistic redundancy measure in order 
to add impetus to further investigation of system safety 
enhancement in mechanical problems. 

2. Event Oriented System Analysis (EOSA) 

The event-oriented approach considers structures and 
structural components as systems and subsystems of 
random events in a lifetime. EOSA enumerates all ob- 
servable, or at least the most important events, and des- 
ignates their status as intact, operational, transitive, fail- 
ure or collapsed. To every event status, a probability of 
occurrence can be assigned. By grouping events of dif- 
ferent status, and associated probabilities, EOSA forms 
systems and subsystems of events. Jointly, the event- 
oriented system analysis combines modes analysis, enu- 
meration of events, probability and information theory in 
order to quantify probabilistic systems’ redundancy. Met- 
hods such as Secon Moment Methods (SM) First Order 
Reliability Methods (FOSM, FORM), Advanced FORM 
(AFORM), Second Order Reliability Methods (SORM) 
or Monte Carlo simulation and Bayesian methods are on 
disposal for probability calculations [19-23]. Most of 
these methods have been used in the assessment of safety 
of ship structures and structural components. EOSA uses 
these methods and provides additional information about 
structural behaviour through a calculation of entropies of 
systems of events. Additionally, methods of operational 
modes and effects analysis such as minimal cut-sets, 
minimal tie-sets, event-tree and fault-tree analysis can 
identify events [24,25] and determine their relationships. 
EOSA methodology is summarized in the sequel. 

A system, S, consists of all observable events Ek with 
probabilities p(Ek), k = 1, 2, ···, N, where N is the total 
number of events. Events can represent different func-
tional states of the structure such as failure or operational 
state or some other state of the interest. 

Event realization causes that system has a different 
functional status “s”. EOSA designates events and sys- 
tems’ functional statuses with following indexes: i-intact 
(non-damaged), c-collapse, t-transitive, n-non-transitive, 
o-operational (with full or reduced capacity), f-failure, 
d-damage and combinations. Subsystems of events are 
made of the events of the same type. i.e. So is then a des-
ignation of a subsystem of all operational events and Sf  

is a subsystem of all failure events. Finite schemes are 
commonly used as mathematical presentation of the sys- 
tems and subsystems of events [16]: 
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The systems of events can be also represented as a 
summa of subsystems of events: 

 o fS S S                  (2) 

So ad Sf are subsystems of operational and failure 
events 
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N = No + Nf is the total number of events in S. 
The reliability of a system is equal to the probability of 

the occurrence of the subsystem of operational events: 
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The probability of failure of a system is equal to the 
probability of a failure subsystem: 
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For complete systems is p(Ek) = 1, otherwise p(Ek) 
< 1. 

Redundant structures are operational even if some of 
the structural components have failed. Thus, the redun-
dant systems of events, representing redundant structures, 
have to be analysed as functional multi-level operational 
systems. A functional level can be understood as a sys-
tem of events comprising all functional states of an ob-
ject. The initial intact state of a structure is modelled as a 
system of events on the first functional level (primary 
level). After failure of one or more structural components, 
the system transits from the first level to the second level 
(secondary level). Further failures cause the system to 
transit to the third level, and so on. 

An event  is of status “s”, where l = 1, 2, ···, n is 
a level and , and  is the number of 
events of the same status “s” within a functional level. 

l s
kE
1, 2, , l sk N l sN

EOSA applies the entropy concept from information 
theory to assess the effects of the number of events, and 
dispersion of their probabilities, as well as the possible 
redistribution of loads after failures. The entropy in in- 
formation theory is a logarithmic function that measures 
uncertainty originally introduced by [13]. The Rényi en- 
tropy is a generalization of Shannon entropy, and repre- 
sents a family of functionals for quantifying the uncer-
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tainty of a system. The entropy of a system of events of 
order α, for α ≥ 0 is [14]: 

  2
1 1

1
log

1

n n

n
i i

i iH S p

  
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where log base is commonly 2. For the same probabili- 
ties of all events, Rényi entropy is   lognH S  n . 
Higher values of α give a Rényi entropy which is deter- 
mined by events with the highest probability. Lower 
values of α give a Rényi entropy that weights events 
more equally, regardless of their probabilities. The case α 
= 1 gives the Shannon entropy. 

Equation (5) represents a measure of uncertainty cor- 
responding to either incomplete or complete system of 
events. This is convenient for complex systems with large 
number of events where probabilities of some events 
cannot be determined, or even some events remain un-
known. 

System of events can also be considered under the 
condition that only the operational events are of interest. 
The conditional entropy of system S can be obtained as 
follows [26]: 
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The entropy of the operational subsystem does not de- 
pend on the probability of a system p(S). Nor does it de- 
pend on whether the system is complete or incomplete. 

3. The Probabilistic Redundancy Definition  
(Redundancy Assessment) 

The EOSA relates structural redundancy of the system S 
to the uncertainty of the subsystem of operational modes 
So [27] by employing the conditional entropy (6), as: 

  o

o
NRED S H S S              (7) 

The events of a particular interest for redundant struc-
tures are the transitive events Et that cause the system lS 
to transit from a current functional level l to a subsequent 
level l + 1 denoted . Every transitive event also leads 
to the emergence of a new functional state j on the next 
level j , of possibly different status such as opera- 
tional, failure, collapse, transitive, etc. Functional states 
represent distinguished independent ways the object per- 
forms its functions with full or with reduced operational 
capacity. Newly emerged jth state at level l + 1, after the 
transition event k  occurred at level l, can be defined 
as a subsystem of compound secondary and primary 
transitive events 

1l S
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Conditional probability of transition from one level to 
the next level is defined as: 

S E  . 
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A practical measure of the probability of system’s re-
sidual strength  1 tp S  on the primary level relates on 
one hand the probability of damage occurrence  1 fp S


 

with the probability of system collapse , and on 
the other, the probability of system operation 

 1 cp S
 1 op S  

in undamaged condition with the probability of the intact 
system  1 ip S . The probability of the primary residual 
strength  1 tp S  equals then to the probability of the 
transitive modes and can be expressed as follows: 

        1 1 1 1 1t f c op S p S p S p S p S    i    (9) 

The increase of the probability of residual strength, 
 1 tp S  in (9) practically can involve the diminution of 

the probability of the primary intact mode , rather 
than of the collapse mode , since  

 1 ip S 
 1 cp S

   1i p S c





1p S  for realistic objects. Therefore, the 
probability of residual strength for realistic objects has to 
be carefully selected in order to ensure the maximal pro- 

bability of the primary intact mode , the mi-  1 ip S

nimal probability of the collapse mode  and the  1 cp S
1 tsufficient probability of transitive modes . More-

over, the subsequent functional states also have to satisfy 
the safety requirements imposed on a redundant system 
after next component failures. 

p S

The traditional probabilistic redundancy index RI is 
defined as the system’s primary residual strength condi-
tioned by any first component failure 28. Such an index 
can be calculated in terms of the probabilities of primary 
structural level l = 1 as shown: 
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The complement RR of the probabilistic redundancy 
index is defined as the system’s primary collapse, condi-
tioned by any first component failure 29 as shown: 
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The traditional redundancy index RI and its comple-
ment RR do not account for the intact mode. 

The probabilistic redundancy factor RF can be defined 
30, as the system’s primary residual strength, condi-
tioned by the collapse of the system, as follows: 
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Redundancy in engineering problems in this study is 
viewed rather as an operational abundance than mere 
survival ability after first component failures. Therefore, 
an alternative probabilistic redundancy index proposal is 
introduced in the study that considers the system’s pri-
mary residual strength conditioned by operational mode j k j kp S E p S E p E  k        (8) 
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as shown [31,32]. 
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The primary redundancy indices (10, 11, 12 and 13) do 
not account for the redistribution of loads in case of 
component failures. The probability of the reserve strength 
in case of load redistribution may be more appropriately 
expressed by the compound probabilities  2 1i t

j kp S E

 2 ip S

 
of the second level intact mode and first level transitive 
mode, denoted also as secondary reliability  cal- 
culated as: 
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Moreover, the probability of the primary reserve 
strength may be viewed as the upper bound on the sec- 
ondary reliability. This reasoning can be extended to a 
system with any number of functional levels representing 
redundant structure. The overall reliability of the multi- 
level system that accounts for probabilities of all intact 
modes on all levels l = 1, , n is calculated as follows: 

         1 2o n o i i np S p S p S p S p S      (15) 

4. Example 

The example applies EOSA to investigate the probabilis-
tic redundancy of a longitudinally stiffened structure lo-
cated at the strength deck of a double-hull oil tanker 
(Figure 1). 

The ship has following general characteristics: length 
between perpendiculars 174.8 m; beam 31.4 m; draught 
at full load 12.2 m; block coefficient Cb = 0.82; depth 
17.5 m; height of neutral axis from bottom 7552 m; dis-
placement (full load draught) 47,400 tons [33]. 

Structural analysis, done according to the DNV Rules 
[34,35], showed that the considered structural configura-
tion remained operational when some of the components 
have failed. All longitudinals and plating between longi-
tudinals were involved in redundancy calculation as load 
carrying elements giving the total number of seven 
structural elements (Figure 1) on the first functional 
level (l = 1). After failure of one longitudinal stiffener the 
system transits into second functional level with six car-
rying elements on the second functional level (l = 2).  

Finally, after failure of two longitudinal stiffeners the 
system transits into third functional level (l = 3) with five 
remain carrying elements (3 × plating, T girder and one 
remaining longitudinal stiffener). 

First functional level includes the following random 
events: buckling of plating between longitudinals (3 ba-
sic events), torsion buckling of bulb longitudinals (3 ba-
sic events), yielding of bulb longitudinals (3 basic events), 

torsion buckling of T girder (1 basic event) and yielding 
of T girder (1 basic event). The first functional level has 
n = 11 events designated l

kA , k = 1, 2, ···, 11. 
Reliability indices are calculated according to [19]: 

2 2

C Di i
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
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            (16) 

where l
iC

  represent the mean values of stress random 
variables. In the cases of yield failure modes the mean 
values were taken as 60% of the material yield stress. In 
the cases of buckling failure modes the mean values were 
taken as calculated from the DNV formulas for critical 
buckling stress [35] for the corresponding structural ele-
ment. 

Di
l  represent mean values of load stresses de-

termined in structural analysis. 
Di

l  and 
Di

l  represent 
corresponding standard deviations of the variables. 

All the stress random variables are assumed to be in-
dependent and uncorrelated, with linear safety margins 
for all functional levels. All stress variable are taken to 
be log-normally distributed with coefficient of variation 
(COV) of 0.7 [36]. Reliabilities, R, and collapse prob-
abilities, pf, are calculated respectively: 

  1 1i
k iR p A      and 

  1 11c i f k kp p A p A    

where Φ is the standard normal density function. For 
levels with only one state j index is omitted for simplicity. 
The mean values of the wave induced bending moments 
and design pressure on deck are calculated according to 
the DNV Rules. The mean values of the still-water 
bending moments were taken as given in the trim and 
stability book for the full load state of the considered  
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Figure 1. Location and configuration of the investigated 
panel of the tanker deck. 
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ship. Statistical properties of random variables for tank-
ers can be found in literature [37-39]. Selected data is 
presented in Tables 1 and 2. In this investigation the fol-
lowing elements of the deck geometry were considered 
as deterministic variables: thickness of plating tp = 14 
mm, span of longitudinals l = 5.08 m, spacing of longitu-
dinals s = 0.8 m, web height (T-profile) ht = 450 mm, 
web thickness (T-profile) tt = 14 mm, flange width (T- 
profile) bt = 100 mm, flange thickness (T-profile) tb = 14 
mm, bulb longitudinals HP 220 × 11.5. 

Table 3 shows properties of the tanker deck structure 
for all functional (operational) levels. 

The number of compound events 1N

l on the first 
functional level is: 1N = 2n = 211 = 2048. There is only 
one intact functional state represented by the event . 
Collapse of either one of the longitudinals HP2 or HP3 
(Figure 1) causes transition from the first functional 
level to the second functional level. There is 1Nt = 15 
transitive events on the first level, denoted , k = 1, 2, 
···, 1Nt. The remaining 1Nc = 2032 events on the first level 
represent collapse of the structure. 

E

1

1
1
iE

t
kE

 
Table 1. Statistical properties of material and loads. 

 Mean Distribution COV 

Yield stress (mild  
shipbuilding steel) 

235 N/mm2 Log-normal 0.06 

Modulus of elasticity 206,000 N/mm2 Normal 0.01 

Stillwater bending  
moment (sagging) 

296,252 kNm Normal 0.4 

Stillwater bending  
moment (hogging) 

244,690 kNm Normal 0.4 

Wave-induced bending 
moment (sagging) 

1,533,336 kNm Gumbel 0.09 

Wave-induced bending 
moment (hogging) 

1,428,791 kNm Gumbel 0.09 

Design pressure (deck) 13.6 kN/m2 Normal 0.09 

 
Table 2. Statistical properties of the deck panel. 

 Mean Distribution COV 

Width of effective plate flange 800 mm Normal 0.01 

Section modulus (longitudinals 
and plate flange bi) 

326 cm3 Log-normal 0.04 

Midship section modulus at deck 16.14 m3 Log-normal 0.04 

 
Table 3. Properties of the deck structure (all levels). 

 
Level 
L = 1 

Level 
L = 2 

Level 
L = 3 

Panel cross sectional area in cm2 392 360 327 

Panel neutral axis in cm 9.3 8.9 8.4 

Panel moment of inertia in cm4 74,021 71,021 67,785 

Events are appropriately grouped according to their 
functional state and the structure is modelled by the sys-
tem of events with three subsystems: intact, transitive 
and collapse. The system can be written as 

 1 1 1 1i t cS S S S   . 

The probability of intact state on the first functional 
level is calculated as: 
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The probabilities of transitive events at the first level 
can be calculated likewise: 
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The probabilities of the remaining events are: 
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The subsystem of transitive events is modelled as: 
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Probability of the subsystem of transitive events re- 
presents the probability of transition from the primary to 
the secondary level also denoted as the probability of the 
primary residual strength and can be calculated as: 
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The subsystem of collapse events is modelled as: 
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The probabilities of individual collapse events are not 
listed here due to large number of events (Nc = 2032). 
Probability of the subsystem of collapse events is: 
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One can easily check that on the first functional level 
the following relation among probabilities holds: 

     1 1 1
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The second functional level emerges when one of the 
longitudinals, HP2 or HP3, collapses. The remaining part 
of a structure is still operational, but now with reduced 
load-carrying capacity. In this case, it is assumed that 
collapsed longitudinal has no remaining load-carrying 
capacity. 

The load is then redistributed to the remaining ele-
ments on the deck structure and new values of reliability 
and probability of failure are calculated. 

When any of the longitudinals fails the structural con-
figuration reduces to 6 load-carrying elements: 3 × deck 
plating, T longitudinal and remaining two HP longitudi-
nals. 

Hence, the system of events on the second functional 
level has 9 basic events with probabilities calculated in a 
same way as for the first functional level: 

 2
1
ip A  0.9955, 0.9955,  2

2
ip A   2

3
ip A  0.9955, 

 2
4
ip A  0.9999, 0.9960,  2

5
ip A   2

6
ip A  0.9999, 

 2
7
ip A  0.9999, 0.9855,  2

8
ip A   2

9
ip A  0.9855. 

Probability of occurrence of one compound intact 
event on the second functional level is: 

   
9

2 2
1

1

0.9541i i
k

k

p E p A


   

System and subsystems of events, representing deck 
structure, are presented on Figure 2. The diagram shows 
levels, subsystems and events as well as transition paths 
from one functional level to another. This figure illus-
trates complexity of modelling of multi-level operational 
redundant structures. 

However, a number of random events have extremely 
low probabilities of occurrence, which gives the oppor-
tunity to reduce the number of events in future develop-
ment of the EOSA methodology. 

Failure of the remaining longitudinal, HP2 or HP3, 
causes emergence of the third functional level. Thus, the 
second functional level also includes three subsystems: 
intact, collapse and transitive. The second level is mod-
elled by the following system of events: 

 1 1
2 1 2 1 2 1 2 1 1

1 1, , , , , ,t t
i t t t

j j N N
S S S E S E S E S      c

t

2
8 9

i

1

 

This level consist of non-transitive events from the 
first level (intact, collapse) and new states that emerge 

( 2 1 ) due to occurrence of some tran-
sitive event on the previous level. From 15 transitive 
events on the first level 15 functional states will emerge 
on the second level. However, only six of those new 
states are further transitive (Figure 2). Every transitive 
state on level 2 has 3 transitive events causing emergence 
of 18 new states on the third level (Figure 2). The prob-
abilities of occurrence of transitive events for the first 
functional state j = 1 on the second level are calculated: 

2 1
1 1 15 15, ,tS E S E  

        
6

2 2 2 2
1 7

1

5            0.9555 10

t i c i
k

k

p E p A p A p A p A




 

 

  

     
8

2 2 2
2 9

1

0.1407 10t i c
k

k

p E p A p A 



   

2
9
c



 

        
6

2 2 2 2
3 7 8

1

6            0.1408 10

t i c i
k

k

p E p A p A p A p A




 

 

  

Probabilities of the remaining transitive events and 
collapse events can be calculated in a same way. Since 
the total number of compound events on the second level 
is 2N = 9713 the probabilities of remaining events are not 
listed here. The reliability  and the probability 
of failure 

 2 ip S
 2 cp S  for the second functional level are: 

        
1 2 1

2 1 2 1

1 1 1

           0.0118

t i tN N N
i t i t

k k j
k k j

p S p E p E p E p S
  

 



   2 i
j

2 c
j

 

        
1 2 1

2 1 2 1

1 1 1

4            5.6 10

t c tN N N
c t c t

k k j
k k j

p S p E p E p E p S
  



 

 

    

The overall reliability of the system with 2 functional 
levels,  2 op S , is probability that transition from the 
first level to the second level will result in occurrence of 
event representing one of undamaged states of second 
level. It includes all probabilities of intact states on the 
first level as well as all compound intact states on the 
second level of transitive states on the first level ( 1 ) 
and one intact event on the second level ( ): 

t
kE

2
1
iE

     2 1 2 0.9869o i ip S p S p S    

Adequately, the overall probability of failure is then: 

     2 1 2

40.0125 5.689 10 0.0131

f c cp S p S p S



 

   
 

Again,    2 2 1o fp S p S   and the second level 
system (2S) is complete system of events. 

The third functional level (l = 3) arises when failure of 
both longitudinals, HP2 and HP3, occurs (not necessarily 
simultaneously). On the third level there is 5 structural   
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Figure 2. EOSA model of multi-level system of events representing part of tanker structure. 
 
elements remained to carry redistributed load: 3 × plating, 
T girder and longitudinal HP1. This structural configura-
tion represents non-redundant structure, since further 
damage of any element will cause the entire structure to 
collapse. The number of basic events on the third level is 
connected to the number of possible types of failure of 
the remaining structural elements, thus giving 7 basic 
events . 3 7n 

Probabilities of all intact states are equal: 

   
7

3 3

1

0.9195, 1, 2, ,18.i i
j k

k

p S p A j


      

Probabilities of 18 collapse states are: 

 3 0.0804, 1,2, ,18.c
jp S j    

The third level is modelled as the system of events 
consisting of the non-transitive events on the second 
level together with the new states on the third level 
(compound events). Compound probabilities on the third 
level are equal to the probabilities of the transitive events 
on the previous levels: 

There is 18 operational states on the third level emer- 
ging from j = 1, 2, ···, 18 compound transitive events on 
the second functional level (Figure 2). Each one of the 
18 operational states on the third level has one intact 
event. All the remaining events are collapse events, i.e. 
there are no transitive events on the third level (non-re- 
dundant structure).        3 2 1 3 2 1t t t t

j j k j jp S E E p S p E p E     k  

The total number of events on the third level is 3N = 
12017. The probabilities of 7 basic events are: 

     3 3 3
1 2 30.9874, 0.9874, 0.9874i i ip A p A p A    

Reliabilities  3 ip S  and probabilities of failure  
 3 c

jp S   are calculated, using the same approach as 
before, by means of a computer: 

 3 41.5977 10ip S    and  3 51.3979 10cp S         3 3 3
4 5 60.9999, 0.9887, 0.9999i i ip A p A p A    

The third functional level can be also viewed as a sys-
tem of subsystems  3 3 3o fS S S  , where the subsys-  3

7 0.9660ip A   
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tem of operational states is and   3 1 2 3o i iS S S S  
3 1 2 3

i

subsystem of failure states is  f c c cS S S S   . 
The overall reliability includes all probabilities of in-

tact states of the first level and the probabilities of transi-
tive and intact states on the second and the third level: 

       3 1 2 3 0.9870o i i ip S p S p S p S     

The total probability of collapse includes all probabili-
ties of collapse states on the first level as well as com-
pound probabilities of transitive and collapse states on 
the second and third level: 

       3 1 2 3 0.0130f c c cp S p S p S p S     

Since 0.9870 + 0.0130 = 1, the 
system of events that models the structure is complete. 

   3 3o fp S p S 

The maximum entropy on the first functional level is 
log(1N) = log(2048) = 11.0. The conditional entropy of 
the first functional level with respect to the operational 
modes denoted as redundancy with respect to the opera-
tional mode is according to Equations (5) and (6): 

   1 1 1 0.1125 bits.o oH S S RED S   

The conditional entropy of the system of events for the 
second level is then: 

   2 2 2 1.0245 bits.i iH S S RED S   

System redundancy after inclusion of the third level is: 

   3 3 3 1.1971 bits.i iRED S H S S   

Maximum redundancy is 4.1699 bits.  3

max

iRED S 

The first aim of the redundancy based design in the 
example was to determine the spacing of deck longitudi-
nal that lead to the most redundant deck topology, that is, 
with largest RED(S), starting from the prototype spacing 
of 80 cm. The parametric study of structural redundancy 
was performed for the range of spacing of deck longitu-
dinal between 63 and 97 cm with following constraints: 
 The target reliability of a modified structure is equal 

or larger than the reliability of the initial structure. 
 The weight of a modified structure is constant. 

The analysis resulted with the highest redundancy 
RED(S) = 1.7769 for configuration with b1 = 69 cm, b2 = 
80 cm and b3 = 91 cm (Figure 3), which significantly 
differs to the prototype (b1 = b2 = b3 = 80 cm). The reli-
ability of that configuration is R = 0.981. The highest 
redundancy indicates the structural configuration with 
the most uniformly distributed probabilities of operatio- 
nal modes for each structural element. 

The second aim of the redundancy based design in the 
study is to compare the entropy based redundancy meas- 
ure RED(S) to the newly proposed probabilistic reliabil- 
ity index Ro and to the traditional redundancy index Ri, 
Figure 4. The three redundancy measures are computa-  

 

Figure 3. Results of redundancy based design of the part of 
ship deck structure. 
 

 

Figure 4. Redundancy indices Ri and Ro for the first two 
functional levels to the entropy based redundancy measure. 
 
tionally not compliant due to different methodologies in 
their definitions. Values of Ro indices in the example are 
normalized with respect to the minimum gained values of 
Ro at each level. The entropy based redundancy measure 
RED (S) depends on the probability of operational modes 
at all functional levels and the values of redundancy in-
dices Ro and Ri depend on the probabilities of transitional 
subsystems on the first level only. 

The maximum of the traditional index Ri indicates a 
different structural configuration as the best, for b1 = 79 
cm, b2 = 80 cm, b3 = 81 cm, on both levels. However, the 
maximum of Ro redundancy index shows a good trend as 
its values strive towards configuration with maximum 
redundancy in each new level. On the first level the best 
index value is gained for b1 = 74 cm, b2 = 80 cm, b3 = 86 
cm on the second level best index value is gained for b1 = 
67 cm, b2 = 80 cm, b3 = 93 cm that almost coincides with 
the values of the configuration with highest RED(S). 

5. Conclusions 

Most of the engineering decisions are governed by con-
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siderations about matter and energy in the physical space. 
Some of the decisions are additionally supported by the 
probabilistic and statistical laws governing the probabil-
ity space. However, the event-oriented system analysis 
(EOSA) combines the physical and the probabilistic 
space to facilitate some of the engineering decisions us-
ing the entropy concept valid in the event space. 

The paper compared the entropy-based redundancy 
measure and the probabilistic redundancy indices attain-
able within the EOSA. The underlying idea of the study 
is that the entropy-based redundancy measure most ap-
propriately captures the intuited meaning of the structural 
redundancy even in case of cascades of failures and load 
redistribution. The example reveals at this point of the 
investigation that the newly proposed redundancy index 
Ro in the paper, which relates the primary residual 
strength to the operational modes only for the first com-
ponent failure, can be used as an indicator that approxi-
mates structural redundancy. It follows at the primary 
level that the trend of the entropy-based redundancy 
measure RED(S) that accounts for the multilevel se-
quences of component failures more appropriately of the 
traditional redundancy index. 

The advantage of the redundancy index, where appli-
cable, over the entropy-based redundancy measure, is in 
simplicity and lower calculation effort. However, for 
more precise conclusion of redundancy of complex, mul-
tilevel operational structures with a large number of indi-
vidual components, the calculations of all functional lev-
els are necessary. The paper acknowledges that the event- 
oriented analysis of redundant objects exposed to succes-
sive component failures, which change the system con-
figuration and provoke a redistribution of demands and 
capabilities, is a complicated task, but it also proves that 
it is feasible attainable by appropriate software. 

Finally, the study confirms that the EOSA has potenti-
alities for structural safety enhancement by adopting the 
entropy concept in the maximal redundancy principle for 
the redundancy-based design. 
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