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ABSTRACT

Increases in human population and world temperatures, which have risen by 1.1°C in the last ten
years, are already making it more difficult for agriculture to get water in areas where it is limited. The
concept of "water-smart farming" was created to solve issues related to the accessibility, availability,
and usage of agricultural water. In climate-smart agriculture, it supports aims and practices
pertaining to agricultural water. It includes several water-saving techniques, tools, and technology
for growing food sustainably, as well as cropping systems that adapt to changing climate conditions.
The urgent problem of agricultural water competition can be lessened with the successful
application of water-smart farming. Therefore, this review introduces the conceptual framework of
water-smart farming and its main components or ideology. In situations when water is scarcer than
land and other resources used in production, increasing crop water productivity is an important
response strategy. A growing, wealthier, and more urbanized population places increasing
demands on food, which can be met with improvements in agricultural water productivity. However,
there is also a pressing need to achieve improvements in agricultural water management because
of pressure to reallocate water from agriculture to cities and to increase the amount of water
available for environmental purposes. Water clearly has a role in reducing poverty and promoting
economic progress. The review also briefly shows the contribution of some of these best practices
and adaptive technologies of water-smart cropping toward promoting water-saving methods used

for crops and vegetables.

Keywords: Climate change; food security; greenhouse gas emission; water smart farming.

1. INTRODUCTION

For adequate living standard as in western and
industrialized nation, a renewable water supply of
at least 2000 m® per person per annum is
necessary. If only 1000-2000 m3 per person per
annum is available, the country is ‘water
stressed’, while the value comes below 500 m3
per person per year, the country is called 'water
scarce' (Kumar and Kar, 2013; Ahmad et al.,
2009). “The demand for water will only rise due
to the growing population and improving
standards of living in competing industries such
as agriculture, industry, and home use. In
addition, an increasing amount of water will be
needed for environmental issues like aquatic life,
wildlife refuges, and leisure. Sustainable water
management in agriculture is a major concern in
India due to shifting global climate patterns and
decreasing per capita availability of surface and
ground water resources” (Ashoka et. Al., 2024;
Kumar et al., 2023). Future agricultural water use
in India will confront fierce competition for limited
water resources due to growing water demand
from other industries (Barker et al.,, 2007;
Burzaco et al., 2013; Busari et al, 2015;
Campbell et al, 2011; Comprehensive
Assessment of Water Management in
Agriculture, 2007; Craufurd & Wheeler, 2009).
Therefore, the available water resources would
be inadequate utilizable to meet the future water
needs for all sectors unless the utilizable quantity
is raised by all possible means and water is used
more efficiently. Adoption of the suitable agro-

techniques for cultivation of crop is need of hour
to produce more crops with less water utilized so
as to check the reduction of ground and surface
water resources in India. Recognizing the
importance of above fact, the country has
developed water smart agriculture for achieve
'more productivity per drop water (Ercin &
Hoekstra, 2014; Estavillo et al., 2002; FAO,
2014a; Gaihre et al., 2011; Gathala et al., 2013;
Gill et al., 2005).

Efficient management of water resources is
essential to guaranteeing fair distribution and
maximum use (Godfray et al., 2010; Grace et al.,
2012; Gupta et al., 2016; Hansen et al., 2007;
Harvey & Pilgrim, 2011; Hertel & Rosch, 2010;
Ignaciuk & Mason-D'Croz, 2014; Ingram et al.,
2010). Fundamentally, this means utilizing every
drop of water to maximize food production while
minimizing losses, or, to put it more concisely,
understanding the widely recognized definition of
water usage efficiency, which is "the amount of
carbon assimilated as biomass or grain produced
per unit of water used by the crop" (Hoover et al.,
2023). “A wide range of techniques are included
in water-smart cropping solutions, such as the
development of drought-tolerant maize varieties,
cover crops, intercropping legumes with food
crops, system rice intensification, alternate
wetting and drying, and farmer-led reduced
irrigation. It is imperative that these methods be
widely used in conjunction with good agricultural
practices. Smallholder farmers, who remain
dominant in global agricultural landscape, must
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be empowered to spearhead adaptation efforts of
climate change” (Mushi et al., 2023; Ndhlovu and
Mhlanga, 2023). “This empowerment
necessitates agronomic management
encompassing fertilization, cropping patterns,
irrigation, and plant protection, along with
addressing external factors that is input supply,
post-harvest facilities and policy regulations”
(Islam et al., 2022; Jasa et al., 2000; Keane et
al., 2009; Kern & Johnson, 1993; Kijne et al.,
2009; Komba & Muchapondwa, 2015;
Kristjanson et al., 2012).

Over the past few decades, it has become clear
that freshwater shortage is posing a danger to
the sustainable development of human society
due to a continually rising demand (Ladha et al.,
2003; Larney et al.,, 1997; Lobell et al., 2008;
Lobell et al., 2011; Marius, 2009; McCartney &
Smakhtin, 2010; Mohammed & Tarpley, 2009).
Water crises are the worldwide risk with the
greatest potential impact, according to the World
Economic Forum's most recent annual risk
assessment (World Economic Forum, worldwide
Risks 2015). “The primary causes of the rising
worldwide demand for water include the growing
world population, rising living standards, shifting
consumption patterns, and the growth of irrigated
agriculture” (Vérosmarty et al., 2000; Ercin and
Hoekstra, 2014). There is enough freshwater
available annually and globally to meet this need.
However, there are significant seasonal and
geographical changes in the demand and
availability of water, which causes water scarcity
in a number of regions of the world at certain
periods of the year (Naresh, 2013; OECD, 2014;
Paustian et al., 1997; Pathak, 2009; Pathak et
al., 2012; Rhodes et al.,, 2014; Robert et al.,
2009; Saharawat et al., 2012). The fundamental
cause of global water shortage is the spatial and
temporal  mismatch  between  freshwater
availability and demand (Savenije, 2000). This
mismatch can be quantified physically or in terms
of the consequences for society or the economy
depending on the ability to adjust (Rijsberman,
2006; Wolfe and Brooks, 2003). This paper aims
to address two topics: (i) the potential
contribution of agricultural research to enhance
the productivity of small farmers and their
capacity to cope with and lessen the effects of
climate change; and (ii) the most effective way to
improve productivity under near-normal or
slightly below-normal rainfall conditions using
smaller-scale water management systems. and
(iii) to describe how much improvements in water
and land management, can increase productivity
of water in the agriculture.

Water scarcity facing by people: When
assessing water scarcity annually, one or a few
months of extreme shortage won't be noticeable
because they will average out with the other, less
scarce months. We discover that 1.8 to 2.9 billion
people—the range given by previous estimates—
have been severely lacking in water for at least 4
to 6 months. Consequently, we demonstrate that
guantifying the fluctuations in water shortage
over the course of a year helps to illuminate the
realities faced by The assumptions made about
the degree of environmental flow requirements
do not significantly affect the outcomes. With the
present assumption of flow requirements
environmental at 80% of natural runoff, we find
4.3 billion people living in areas with WS > 1.0 at
least one month in a year. If we would assume
flow of environmental requirements at 60% of
natural runoff, this number would be still 4.0
billion. The results are also sensitive to
uncertainties in blue water footprint and blue
water availability (Silva-Olaya et al., 2013; Smith
et al, 2007; Tirado & Cotter, 2010; West &
Marland, 2002; Wolfe & Brooks, 2003; World
Bank, 2008; World Bank, 2008b; Yao et al,
2009). We tested sensitivity of the estimated
number of person facing severe water scarcity to
change in blue water footprint and blue water
availability. When we increase water availability
worldwide estimates and for each month by 20%,
number of people facing severe water scarcity
during at least one month of year reduces by 2%
(from 4.0 to 3.9 billion). Reducing water
availability by 20% gives 4.1 billion. Changing
water foot prints in the £20% range results in the
number of people facing severe water scarcity to
be between 3.9 and 4.1 billion as well. Changing
water availability in the £50% range vyields 3.8 to
4.3 billion people facing severe water scarcity
during at least part of the vyear, whereas
changing water footprints in the +50% range
yields 3.6 to 4.2 billion people. Due to a
significant temporal mismatch between water
availability and demand, sensitivity is low:
Generally speaking, availability is higher than
demand, or the reverse is true. Changes in one
or the other can only cause the situation to shift
from one level of shortage to another when the
demand and availability of water are of equal
size.

The future of food production and water-
smart agriculture: Global food systems differ
greatly, as do the ways in which various
consumers obtain food. The majority of the
world's poorest rural communities still depend
heavily on locally grown food and poorly linked
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Soll type
Daily river discharge
Dally precpitation and temperature,
evapo-transpiration, humidity, solar radlation

Fig. 1. Water security thread from Vital Signs. The pyramid of the water security thread depicts
the integration of metrics (1) that build the desired indices (2) with the outcomes of interest (3a
and 3b). Adapted with permission from the Vital Signs programme (S Barbour, personal
communication, 2014)

local economies to survive and make a living.
Barrett (2007). Cross-country econometric data
provided by the World Bank (2008a)
demonstrates that investments in agriculture,
where smallholder farmers are involved as
managers and laborers, have double the impact
on reducing poverty as investments in any other
sector. The difficulty lies in reducing these
emissions without jeopardizing the security of
food and livelihood, especially for the
impoverished rural population. Hence, research
on climate change, agriculture, and food systems
is especially needed to address extremely local
contexts while also paying the necessary
attention to larger institutional mechanisms for
disseminating solutions, creating common future
visions, and negotiating disparate roles and
responsibilities. All of this will require a sincere
dedication to fostering collaboration, building
capacity, and resolving societal disparities.

Regional effects of climate change are probably
going to be significant and uneven, with some
areas benefiting from a changed environment
and others suffering negative effects. In most
important places (such as subtropical and
tropical areas), food production is generally
expected to drop; but, when technology is more
readily available and proper adaptive

modifications are made, agriculture in
industrialized countries may actually gain.
Parvatha, (2014). Accordingly, it is predicted that
crop productivity will rise marginally at mid-to
high-latitudes for local mean temperature
increases of up to 1-3°C, depending on the crop,
and then decline in some places after that. Crop
productivity is predicted to decline at lower
latitudes, particularly in seasonally dry and
tropical areas, with even modest local
temperature rises (1-2°C), which would raise the
risk of hunger OECD (2015). Warmer weather
expected to bring longer growing seasons in
northern areas, and plants every places were
give benefit from carbon fertilization Vuren et al.
(2008).

Farm-scale Management Practices to Improve
Productivity: Enhancing water production is
crucial to lessening the demand on water
supplies. Even with an assumed increase in
water productivity from 1,800 m3 to 1,200 m3 per
ton of grain produced, there would still be a
significant increase in water demand to fulfill the
MDG by 2015. According to Jacob et al., (2009),
the projected increased water requirements,
including for increases in water productivity,
range from 1,850 m3 y-1 in 2015 to over 3,000
m3 y-1 in 2030 and 2050. When we also take
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into account the obligation to allocate water
resources for purposes other than agricultural
output, this extra requirement poses an
enormous difficulty. As per Thornton and Lipper,
(2013), agriculture alone contributes 30-40% of
anthropogenic GHG emissions. Three-quarters
of agricultural in developing countries, GHG
emissions occur and this share may increase
above 80% by 2050. Livestock dung and
fertilized agricultural soils are the sources of
direct emissions. IPCC (2014) states that indirect
emissions are caused by fertilizer leaching and
runoff, changes in land use, and the use of fossil
fuels for transportation, mechanization, and the
manufacturing of agrochemicals and fertilizers.
Changes in conventional land use and natural
vegetation, such as deforestation and soil
degradation, account for the majority of indirect
emissions. Another traditional land use strategy
that involves constantly disturbing the land is
intensive tillage. Due to soil erosion and SOM
breakdown, this method raises CO2 emission
Yibekal et al., (2013).

Reduction of Greenhouse Gases by adopting
conservation agriculture: Positive changes
under agronomic practices like manuring, tillage,
and irrigation can help reduce the release of
greenhouse gases into atmosphere Table 1.
Adoption of controlled irrigation and zero tillage
can reduce the evolution of N20 and COs:.
Reduction in burning crop residues reduces the
generation of COz, CHs4 and N20 to the
significant extent. Saving on diesel by judicious
use of water pumps and reduced tillage can have
play major role. Changing to zero tillage would
save 98 litres diesel per hectare Naresh et al.,
2013. With each litre of diesel generating 2.62
kg, about 3.21 Mt CO2 annum? (about 0.80
MMTCE) can be reduced through zero-tillage in
12 million ha under rice-wheat cropping systems
in Indo-Genetic Plains alone. Intermittent
irrigation and drainage will be further reducing
CH4 emission from paddies by 28% to 30% as
per findings at Pantnagar and IARI (Delhi).
Enhancing plant uptake and decreasing N20O
emission can be achieved by applying
nitrogenous fertilizers deeply rather than topically
and by substituting calcium nitrate or urea for
ammonium sulphate. Through changes in soil
parameters (such as soil porosity, soil
temperature, and soil moisture, among others),
tillage and crop residue retention have a
significant impact on CH4 and N20O emission
[Yao et al., 2009]. According to certain studies,
switching from conventional tillage (CT) to no-till
(NT) can drastically cut emissions of CH4 and

N20O (Estavillo et al., 2002). According to Wang
et al. (1998), the primary variations in the CH4
production zone were caused by the tillage
methods' disturbance of the soil at different
depths. Consequently, depending on the tillage
technique used, the CH4 production zone may
change. Regina et al, 2007 revealed that
CHa oxidation rate were higher when there were
fewer micro-pores or more macro-pores in the
soil.

Table 1. Carbon dioxide emissions over a 19-
day period after tilling wheat residue with
different Method

Tillage method Cumulative CO Loss (t/ha)

Moldboard plough 9.21
Disk harrow 3.79
Chisel plough 3.59
No- tillage 1.91

Source: Reicosky, 1998

Agricultural technology for changing climate
resilience and mitigation: Investing in
agricultural water management systems is just
one way to lessen sensitivity to mild changes in
rainfall; other alternatives include diversification
and breeding for drought stress. The majority of
crop germplasm development aimed in
subtropical regions is concentrated on increasing
tolerance to stressors like drought. There is also
debate over whether increasing yields during dry
spells must come at the expense of yields during
seasons with adequate rainfall, even if the
production of drought-resistant germplasm is
generally well-established and supported in
comparison to some of the more recent
developments in climate risk management.
Diversifying one's sources of income can help
one become more resilient to the unpredictable
nature of the climate if the diversified portfolio
does not significantly reduce average income
and (a) there is no significant correlation between
the various income sources and seasonal
rainfall. Diverse rural economies, combinations of
farm and non-farm businesses within the
household, and cultivars with staggered
phenology at the field scale are examples of
opportunities for diversification. Additionally,
these studies can be used to customize the
creation of germplasm for small-scale water
management  practices like  conservation
agriculture and for cultivar combinations that are
more resilient to dry spells than individual
cultivars (Brown and Hansen 2008).

Climate variability and the frequency, severity,
spatial extent, length, and timing of extreme
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Probability density

FOREFITED
OPPORTUNITY

Climatic outcome [e.q. production, income)

Fig. 2. Idealized representation of the impact of climatic risk associated with different portions
of distribution of some climate sensitive outcome.

weather and climate events are inextricably
linked to climate change (IPCC, 2012). Extreme
weather and climate fluctuation can also have an
impact on yield quality. It has been demonstrated
that the protein content of wheat grain is
sensitive to variations in rainfall and temperature
variability (Porter & Semenov, 2005); in
particular, large temperature extremes during
grain filling can impact the protein content of
wheat grain (Hurkman et al., 2009). “More
fundamental  alterations may  arise in
circumstances where climate unpredictability and
variations are greater, especially if crucial
thresholds for rainfall and/or temperature are
crossed. Changes in nature and timing of
growing season may be inducing smallholders to
grow shorter duration and/or more heat and
drought tolerant varieties and crops” (Gornall et
al., 2010).

Climate risks management: "Reducing water-
related risks posed by high rainfall variability
rather than coping with an absolute lack of water”
is the fundamental problem in subtropical India,
where a large portion of the remaining hunger
and poverty are concentrated (AWMA, 2007).
However, the most promising avenues for
enhancing agricultural water management
provide little control. To address the residual risk
that water control alone cannot minimize, a
comprehensive approach to investing in pro-poor
agricultural water management necessitates
concurrent investment in other climate risk
management measures.

Agricultural climate risk management entails:

e Systematic use of climate knowledge and
climate information in strategic planning
and adaptive decision-making;

and
decline

e Climate informed technologies
management strategies that
vulnerability to climate-variability;

¢ Climate informed policy and market based
interventions that transfer risk from
vulnerable of rural populations.

Climate risk management must be address in full
range of variability, balancing protection against
impacts of the climatic extremes such as floods
and droughts with effort to capitalize on the
opportunities arising from average and favorable
climatic-seasons (roughly 2/3 of the area toward
right, Fig. 2).

2. CONCLUSION

To sum up, this review has clarified a thorough
framework for improving agricultural water
management and developing water-smart
cropping systems that are sustainable. Several
important conclusions have been highlighted by
us during the investigation. As a natural
approach to agriculture's adaptation to climate
change, we have highlighted the critical role that
water-smart cropping plays and highlighted how
it can protect water supplies for coming
generations. We have emphasized the variety of
water-saving methods, technical advancements,
and climate-responsive food cropping systems
that make up the foundation of water-smart
farming. Together, these tactics support the
production of food in a sustainable manner.
Furthermore, when it comes to water, adaption
solutions that rely on energy to provide water are
in opposition to mitigation. Consequently,
increase greenhouse gas emissions. In order to
ensure that short-term activities in a particular
area do not increase vulnerability to climate
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change in the long run, short-term plans to
address food insecurity, provide access to water
resources, or encourage economic growth must
be placed in the context of future climate change.
National, regional, and international policy
harmonization of climate change, agricultural,
and food security is required. Therefore, a variety
of tactics should be used to adapt, such as
increasing the use of water and soil conservation
techniques, crop diversification, planting dates
that are adjusted, crop diversification, and a shift
from farm to non-farm activities. Nonetheless, the
review study suggests that these safeguards
should be reinforced.
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