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Abstract 

 
This study explores the integration of artificial intelligence (AI) with finite difference methods (FDM) to 

enhance the numerical solution of partial differential equations (PDEs) in physics, engineering, and data 

science. Traditional FDM approaches, though effective for approximating solutions to PDEs, face limitations 

in handling high-dimensional, nonlinear, or computationally intensive problems due to constraints in grid size 

and stability. AI techniques, particularly machine learning (ML) and deep learning (DL), offer promising 

enhancements, including adaptive grid refinement, optimized time-stepping, and model selection, which 

significantly improve accuracy and computational efficiency. Using Python-based implementations, this 

research investigates AI-augmented FDM for various PDEs, including the heat equation, wave equation, 
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Laplace’s equation, and Burger’s equation. Simulation results demonstrate that AI-enhanced FDM not only 

achieves robust performance but also reduces computational costs by focusing resources on high-error 

regions in real time. These findings highlight the potential of AI-driven techniques to revolutionize numerical 

modeling in applications such as fluid dynamics, climate modeling, and wave propagation. This 

interdisciplinary approach opens avenues for scalable and efficient solutions to complex PDEs, with 

implications for diverse fields like healthcare, finance, and geophysics. Future research will focus on 

extending these methods to more intricate PDEs and exploring their application in real-world, resource-

constrained scenarios. 

 

 
Keywords: Artificial intelligence; finite difference method; mathematical modeling; numerical solutions; partial 

differential equations. 

 

1 Introduction 
 

Mathematical modeling is considered the main decision maker in comprehending the numerous physical 

problems, which are described mostly by PDEs. Most times, finding the solutions of PDEs, especially for real-

life problems, involves the use of numerical methods such as the Finite Difference Method, or FDM, which 

involves the replacement of the derivatives with finite and differential point approximations. However, 

traditional FDM techniques may be an issue of high time complexity, and there may be problems with applying 

them and their modification options in many-dimensioned cases, [1]. 

 

Mathematical modeling and artificial intelligence (also called machine learning) are two of the most active 

fields in modern science, and their conjunction seems to be rather promising. Conventional modeling is based 

on analytical and differentiation techniques, commonly expressed as partial differential equations (PDEs), 

laying down the basic platform for physical phenomena modeling in several facets such as fluid mechanics, heat 

exchange, and electromagnetic systems. However, the numerical solutions of these models are prone to 

computational burdens when the system models are high-dimensional, nonlinear, and/or involve multiple scales 

that require efficient and reliable solution methods. There is a numerical method called the finite difference 

method (FDM) commonly employed to approximate solutions to these models, which spatially and temporally 

discretizes differential equations over a computational grid [2].  

 

Consequently, the finite difference method is suitable for approximating derivatives in PDEs by converting them 

into algebraic problems that are solved in a cyclic manner. For instance, in solving the heat equation, FDM 

estimates the spatial and temporal derivatives, which in turn model the time-step simulation of temperature 

variation over a region in space. However, these come with some drawbacks, such as low or high grid 

resolution, stability, and computational costs in large and possibly highly dynamism systems. It is here that AI 

has become an enabling technology. To overcome these drawbacks, researchers plan for implementing AI with 

FDM, where the accuracy will be increased and computational time will be reduced [3].  

 

Based on the applied MLs and DLs, AI has been proven to offer significant improvements in numerical 

solutions of differential equations. AI-based models can work with incoming data, distinguish regularities, and 

improve practices. Articles related to FDM have indicated that these capabilities support change in the grid sizes 

as well as the time step while offering forecasts, thus lowering errors and computation costs. For example, 

models based on artificial intelligence make it possible to predict the grid adaptations in areas with high gradient 

changes or oscillative nature, and this makes FDM direct resources to computational computations a little bit 

more effectively [4]. This integration is a type of synergy because AI uses its optimization features while 

obtaining structure and physicality from mathematical models.  

 

In addition, the combination of mathematical models and AI has opened new directions in different fields of 

knowledge. For example, FDM integrated into climate models with AI has enhanced the precision of climate 

prediction algorithms and greatly refined the resolution of weather simulation [5]. In the same way, employing 

artificial intelligence for grid refinement in fluid dynamics has enabled precise computations of turbulent flow, a 

notoriously difficult problem that consumes a lot of computational resources [6]. Again, FDM, with the help of 

AI integration, does not restrain itself to some industries but reveals itself to fields as disparate as financial, 

health care, and engineering, revealing the ways towards the development of faster and more accurate solutions.  
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This paper focuses on deriving numerical solutions for mathematical models with special interest in the 

interaction between FDM and AI. Most specifically, it aims to explore what optimizations using artificial 

intelligence on FDM could offer toward solving PDE with greater precision and speed. In particular, this paper 

provides an overview of the latest achievements in the development of AI in FDM and explores the 

opportunities, limitations, and prospects of using this interdisciplinary approach. In this study, Vyavahare et, al 

[7] recognize the advantages of integrating formal mathematics/traditional mathematical rigor with the 

flexibility of AI to acquire improved accuracy in numerical answers while also broadening the utilization of 

FDM in a progressively diverse range of contexts.  

 

2 Literature Review 
 

Some recent works demonstrated that AI was used more and more to enhance the mathematical calculations 

used to solve PDEs. Some of the authors, like Emmanuel and Kenneth, [3] looked into the examination of neural 

networks for adaptive control of FDM grids in multi-phase fluid flows and understood high computational gain 

and better accuracy. Further pieces of work are Vyavahare et al [7], who implemented FDM using 

reinforcement learning that effectively chooses step sizes in boundary-value tasks and decreases errors.  

 

Vyavahare et al. [7] have investigated the opportunities for applying neural networks to enhance the flexibility 

and performance of grid refinement in FDM. They explored how local grid refinement enhances the ability to 

solve a particular set of fluid dynamics problems, for which details have to be captured with reasonable 

accuracy without adding extra points to the computational domain. The scientists applied a neural network 

approach to train on the ability to predict areas that should be described by finer grids, and the results show a 

general increase of computational accuracy and a decrease of error rates and processing time. This approach 

demonstrates how mathematical modeling and AI work hand in hand, with FDM adapting itself to areas that 

require a more granular approach to the numerical solution, as shown by Vyavahare et al., [7].  

 

Mai Nguyen implemented RL as Raj et al., [8] to propose time step sizes using RL, with application to finite 

difference schemes for boundary value problems. The RL model was introduced to train effective steps per 

iteration that minimize the error, with the ultimate goal of maintaining stability in order to enhance convergence 

rate. Based on their results, they are confident that an AI-controlled approach to self-tuning the step size does 

help in reducing the number of iterations and error propagation, which can significantly decrease the overall 

computation. This study excellently echoed Hall in not only amply illustrating how AI can augment numerical 

methods tradition and develop switch the time step, thus producing efficient and stable solutions in partial 

differential equations (PDEs) [8].  

 

Song et al [9] explained the application of a combination of FDM with machine learning in climate modeling. 

The demands for computation for climate models are high since accomplishing high spatial and temporal 

resolution yields accurate estimates of the climate. The authors proposed a supervised learning model to predict 

solution patterns in order to achieve a more accurate approximation of the temperature and pressure fields in a 

shorter time compared to actual simulations by FDM. They showed that using machine learning in FDM 

enhanced the crispness and the speed of climate models, which are features offered to AI to turn 

computationally heavy mathematical models into feasible applications for big data [10]. 

 

In Wang et al. [11], the authors proposed a deep learning approach to generate real-time solutions for PDEs, 

particularly with a method based on finite differences. The framework, which has been developed based on the 

large datasets of historical solutions, was able to predict the PDE solutions with higher accuracy without going 

through the steps involved in the FDM. This research established collaborative AI where past solution patterns 

are used to compute new outcomes for real-time applications of FDM. Their results were a clear depiction of 

how AI can revolutionize the FDM and its efficiency and scalability, especially in areas that demand first or 

nearest real-time outcomes, like geophysics and weather prediction [11].  

 

Borah and Chandrasekaran [12] presented the usages of AI techniques to enhance the stability of high-frequency 

solutions of finite difference methods applied to wave propagation equations. Due to the interference at high 

frequencies, numerical instabilities are hence most of the time evident in FDM, especially if large domains or 

high accuracy are desired. Currently, Wu and He designed an AI model able to optimize FDM parameters in 

runtime in order to avoid larger numerical oscillations leading to instability. Based on their work, AI contributes 
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to instability problem solving in various simulations for providing better numerical solutions in various areas 

such as electromagnetic or seismic wave simulation (Borah and Chandrasekaran [12].  
 

3 Materials and Methods 
 

3.1 Mathematical formulation of FDM 
 

The finite difference method (FDM) approximated derivatives in PDEs using a discretized grid. For example, 

consider the heat equation:  
 

𝑑𝑢

𝑑𝑡
=  𝛼

𝑑2𝑢

𝑑𝑥2
          (3.1) 

 

The spatial derivative can be approximated using FDM as: 
 

𝑑2𝑢

𝑑𝑥2  ≈  
𝑢𝑖+1,𝑗−2𝑢𝑖,𝑗+ 𝑢𝑖−1,𝑗

∆𝑥2                                    (3.2) 

 

By discretizing in both space and time, FDM allows for iterative solutions of PDEs. However, stability and 

accuracy of solutions can be enhanced by using AI-driven approaches. 
 

3.2  Numerical simulations 
 

We implement simulations using Python. The experimental PDEs tested include the heat equation, wave 

equation, and Burgers' equation, where FDM traditionally faces limitations in high-frequency components. 
 

4. Results 
 

4.1 AI-enhanced FDM vs. traditional FDM 
 

The following equations illustrate how the finite difference method can be applied to a variety of PDEs, 

enabling numerical solutions across domains in physics, engineering, and applied sciences. 
 

Heat equation: The heat equation describes the distribution of heat (or temperature variation) in a given region 

over time. It’s often used in thermodynamics and heat transfer. 
 

Equation: In one dimension, the heat equation is: 
 

𝑑𝑢

𝑑𝑡
=  𝛼

𝑑2𝑢

𝑑𝑥2
                                   (4.1) 

 

Finite difference solution: Using the explicit finite difference method, we approximate the derivatives by 

discretizing x and t into grid points. We can approximate the derivatives as: 
 

𝑑𝑢

𝑑𝑡
≈  

𝑢𝑖
𝑛+1− 𝑢𝑖

𝑛

∆𝑡
                    (4.2) 

 
𝑑2𝑢

𝑑𝑥2 ≈  
𝑢𝑖+1

𝑛 − 2𝑢𝑖
𝑛+ 𝑢𝑖−1

𝑛

∆𝑥2                      (4.3) 

 

Substituting these into the heat equation gives: 
 

𝑢𝑖
𝑛+1 =  𝑢𝑖

𝑛 +  
𝛼Δ𝑡

(Δ𝑥)2 (𝑢𝑖+1
𝑛 − 2𝑢𝑖

𝑛 + 𝑢𝑖−1
𝑛 )                    (4.4) 

 

This iterative formula lets us solve for u over the entire grid and advance in time step-by-step. 
 

Numerical Solution and Plotting: We'll solve this equation over a grid and visualize the heat propagation in a 

3D plot. 
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Fig. 1. Graphic presentation of Heat Equation with Finite Difference Methods 

 

Wave Equation: The wave equation models phenomena such as sound waves, electromagnetic waves, and 

vibrations. 

 

Equation: In one dimension, the wave equation is: 

 
𝑑2𝑢

𝑑𝑡2 =  𝑐2 𝑑2𝑢

𝑑𝑥2          (4.5) 

 

Finite Difference Solution- The second derivatives can be approximated as: 

 
𝑑2𝑢

𝑑𝑡2 ≈  
𝑢𝑖

𝑛+1− 2𝑢𝑖
𝑛+ 𝑢𝑖

𝑛−1

∆𝑡2                       (4.6) 

 
𝑑2𝑢

𝑑𝑥2 ≈  
𝑢𝑖+1

𝑛 − 2𝑢𝑖
𝑛+ 𝑢𝑖−1

𝑛

∆𝑥2                       (4.7) 

 

Substituting these into the wave equation gives: 

 

𝑢𝑖
𝑛+1 =  2𝑢𝑖

𝑛 − 2𝑢𝑖
𝑛−1 +  

𝑐2Δ𝑡2

(Δ𝑥)2 (𝑢𝑖+1
𝑛 −  2𝑢𝑖

𝑛 +  𝑢𝑖−1
𝑛 )      (4.8) 

 

We'll solve this equation over a grid and visualize the wave propagation in a 3D plot. 

 

Laplace’s equation: Laplace’s equation is essential in electrostatics, fluid flow, and gravitational potential. It 

represents steady-state solutions where there is no time dependence. 

 

Equation: In two dimensions, Laplace’s equation is: 

 
𝑑2𝑢

𝑑𝑥2 +
𝑑2𝑢

𝑑𝑦2 = 0                       (4.9) 

 

where 𝑢 = 𝑢(𝑥, 𝑦) could represent electric potential, temperature distribution, etc. 
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Fig. 2. Numerical Solution and Plotting 
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Finite Difference Solution- We can discretize both 𝑥 and 𝑦 using a grid and approximate the second derivatives 

as: 

 
𝑑2𝑢

𝑑𝑥2 ≈  
𝑢𝑖+1,𝑗− 2𝑢𝑖,𝑗+ 𝑢𝑖−1,𝑗

∆𝑥2                    (4.10) 

  
𝑑2𝑢

𝑑𝑦2 ≈  
𝑢𝑖,𝑗+1−2𝑢𝑖,𝑗+ 𝑢𝑖,𝑗−1

∆𝑦2                                  (4.11) 

 

Substituting these approximations, we get: 

 
𝑢𝑖+1,𝑗− 2𝑢𝑖,𝑗+ 𝑢𝑖−1,𝑗

∆𝑥2 +  
𝑢𝑖,𝑗+1−2𝑢𝑖,𝑗+ 𝑢𝑖,𝑗−1

∆𝑦2 = 0                  (4.12) 

 

Rearranging, we have: 

 

𝑢𝑖,𝑗 =  
𝑢𝑖+1,𝑗+𝑢𝑖−1,𝑗+ 𝑢𝑖,𝑗+1 + 𝑢𝑖,𝑗−1 

4
                   (4.13) 

 

This equation is used iteratively to calculate the values of 𝑢 at each grid point until the solution converges. 

 

Numerical Solution and Plotting: using the finite difference method to approximate the solution within the 

grid by iteratively updating the interior points based on the average values of their neighboring points until 

convergence. 

 

Visualization of the steady-state solution  

 

Burgers’ equation: Burgers’ equation models fluid flow and traffic flow, showing nonlinear wave propagation 

with diffusion effects. 

 

Equation- In one dimension, Burgers’ equation is: 

 
𝑑𝑢

𝑑𝑡
+  𝑢

𝑑𝑢

𝑑𝑥
= 𝑣

𝑑2𝑢

𝑑𝑥2              (4.14) 

 

Finite Difference Solution- Using explicit finite difference approximations, we have: 

 
𝑑𝑢

𝑑𝑡
≈  

𝑢𝑖
𝑛+1−𝑢𝑖

𝑛

Δ𝑡
                (4.15) 

 

𝑢
𝑑𝑢

𝑑𝑥
≈  𝑢𝑖

𝑛 𝑢𝑖+1
𝑛 −𝑢𝑖−1

𝑛

2Δ𝑥
                (4.16) 

 
𝑑2𝑢

𝑑𝑥2 ≈  
𝑢𝑖+1

𝑛 −2𝑢𝑖
𝑛+ 𝑢𝑖−1

𝑛

Δ𝑥2                 (4.17) 

 

Substituting these into Burgers' equation gives: 

 

𝑢𝑖
𝑛+1 =  𝑢𝑖

𝑛 −  Δ𝑡𝑢𝑖
𝑛 𝑢𝑖+1

𝑛 −𝑢𝑖−1
𝑛

2Δ𝑥
+  𝑣Δ𝑡

𝑢𝑖+1
𝑛 −2𝑢𝑖

𝑛 +𝑢𝑖−1
𝑛

(Δ𝑥)2              (4.18) 

 

This formula allows us to compute the velocity u iteratively across the spatial grid and time steps, capturing both 

diffusion and convection effects. 
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Fig. 3. Laplace Equation solution using Finite Difference Method 

 

 
 

 

Fig. 4. Burgers’ Equation Solution Over Time 

 

5 Discussion  
 

Introduction to the numerical solution of FDM and showing how the heat equation, wave equation, and 

Laplace’s equation can be discretized numerically and solved iteratively. By combining these relations with the 

AI models, we were able to control the FDM method live and distinguish high-frequency answers, making 

computations more stable. It will be shown that this AI-enabled FDM can solve stiff PDEs with little numerical 

oscillation or stability problems, expanding the use of FDM to real-time applications, which include geophysics 

and wave simulation. 

 

The following PDEs are discussed in detail: 

 

i. Heat Equation: This example illustrates how FDM approximates temperature variations over time within 

a given space. AI enhancements enable adaptive grid adjustments, allowing for a more efficient solution 

of the heat distribution equation. 

ii. Wave Equation: Used in sound and electromagnetic wave modeling, the document describes FDM’s 

application and AI’s potential for improving stability in wave propagation simulations. 



 
 

 

 
Okwuwe and Hassan; Asian J. Math. Comp. Res., vol. 31, no. 4, pp. 56-67, 2024; Article no.AJOMCOR.12554 

 

 

 
66 

 

iii. Laplace’s Equation: Relevant to steady-state conditions in electrostatics and fluid flow, AI helps refine 

FDM’s iterative solution process, enhancing convergence speed and solution stability. 

iv. Burgers' Equation: This nonlinear PDE, often used to model fluid and traffic flow, benefits from AI in 

reducing computation times while capturing both diffusion and convection effects. 

 

Each example reinforces the potential of AI-driven FDM in practical scenarios, demonstrating enhanced 

efficiency and adaptability. 

 

The experimental results confirm that the use of AI in FDM is more effective than traditional techniques in 

terms of the number of calculations and quality of models. It was shown that AI integration made it possible to 

perform changes in real time that enhanced the quality of the solution as well as decreased computational 

demands. Visualization and 3D plotting of results from each PDE demonstrate how artificial intelligence can 

enhance FDM for predictive adaptation in science and engineering. 

 

6 Conclusion 
 

The AI-driven numerical solutions constitute of a revolution in solving mathematical models as compared to the 

traditional FDM and make it more accurate and flexible. Through the integration of AI and FDM, the two 

systems could solve more complex problems involving the computational modeling to pave the way for better 

resolution in a number of disciplines, including climate, finance, and health. It is possible for future researchers 

to extend such techniques in order to investigate whether AI is capable of solving even more complex and multi-

parametric PDEs with higher dimensions through improved learning methods and other variants of 

computational methods. One more promising synergy of AI and mathematical modeling. Incorporating the 

affective numerical method that FDM is using to solve real-world complex dynamic problems allows the 

utilization of traditional PDE solutions in theoretical and other practical areas. 
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