

Asian Journal of Physical and Chemical Sciences

Volume 12, Issue 3, Page 18-25, 2024; Article no.AJOPACS.119346 ISSN: 2456-7779

Radon Risk Awareness among Undergraduate Students of Adekunle Ajasin University, Akungba Akoko, Nigeria

Asere Adeola Margaret a*

^a Department of Physics and Electronics, Adekunle Ajasin University, Akungba Akoko, Ondo State, Nigeria.

Author's contribution

The sole author designed, analyzed, interpreted and prepared the manuscript.

Article Information

DOI: https://doi.org/10.9734/ajopacs/2024/v12i3228

Open Peer Review History:

This journal follows the Advanced Open Peer Review policy. Identity of the Reviewers, Editor(s) and additional Reviewers, peer review comments, different versions of the manuscript, comments of the editors, etc. are available here: https://www.sdiarticle5.com/review-history/119346

Original Research Article

Received: 13/05/2024 Accepted: 16/07/2024 Published: 22/08/2024

ABSTRACT

The study was conducted to assess the knowledge of undergraduate students of Adekunle Ajasin University, Akungba Akoko (AAUA), Ondo State, Nigeria, about radon risk and possible impediment they might face for radon testing. One hundred students were randomly sampled from six Faculties in the University. A descriptive research design of survey type was used and a semi-structured questionnaire was administered to the students. Three research questions raised were solved using descriptive statistics. The survey found that 88% of the responders were not aware that high radon exposure could cause lung cancer and 94% does not believe in the health effect of radon. Concerning radon testing, 8% knew that radon could be detected, 12% had knowledgeable awareness of how to test for radon, and 8% possesses information about where to procure radon

*Corresponding author: E-mail: adeola.asere@aaua.edu.ng;

Cite as: Margaret, Asere Adeola. 2024. "Radon Risk Awareness Among Undergraduate Students of Adekunle Ajasin University, Akungba Akoko, Nigeria". Asian Journal of Physical and Chemical Sciences 12 (3):18-25. https://doi.org/10.9734/ajopacs/2024/v12i3228.

test kits. Insufficient knowledge of radon risk exist among the undergraduate students of AAUA. More awareness through media and lectures is therefore recommended for members of the University community.

Keywords: Radon; risk awareness; testing; undergraduate students, AAUA.

1. INTRODUCTION

Radon is a radioactive gas that is present everywhere [1,2]. Radon is without odour, colour and taste. Radon is the major cause of lung cancer among the population that do not smoke [3] and the leading cause of lung cancer after tobacco smoking [4-6]. Radon originates from rocks and soils and has the tendency to accumulate in indoor area and mines. Uranium-238 is present in rocks and soil, during decay process, it breaks down to radium-226 which also decay to radon-222 with the emission of alpha particle in the process. Radon can move from the point of its production and enters the groundwater, soil surfaces, air and houses [1,2,4,7]. Since it is a radioactive gas, it can be inhaled in indoor or outdoor air or ingested from radon enriched liquid substances [8-11]. Radon contribute the largest part of the public exposure to ionizing radiation [12]. The concentration of radon in indoor air depend on soil, the type of building materials and water used in homes [13-15]. Radon can enter the buildings through many ways like: opened floor joints, cracks in walls and floor, narrow openings and sewage pipes [16,17]. The concentration of radon in homes depend on factors like rate of ventilation, rate of production of radon or its entry point from sources [18,19].

Unlike some developed countries, there is no public agency saddled with the responsibility of creating public awareness on radon exposure and health risk in Nigeria. Testing of radon in homes voluntary is not common as large population of the people have not heard about radon before. Radon testing kits are not produced or available in Nigeria market which made it more difficult for people to test. Even among people that have knowledge of radon, non-availability of radon testing kits in Nigeria market serve as a major barrier to test. The minority that might have heard about radon got the knowledge from formal education [4]. In a research [4], 41% of staff with background in science have knowledge about radon, 19% from health science background and 12% from social science background. The academic background varies significantly with the level of knowledge and the authors concluded that poor awareness of radon exist among University employee of

Obafemi Awolowo University, Ile Ife, Nigeria. Likewise, in another study [5], 75% of Utahs resident never tested their home for radon and 80% could not identify radon as a risk factor for lung cancer while 40% were unaware of radon. Therefore, understanding radon as a health issue has poor nationwide awareness.

Many developed countries have plans and quidelines for radon level monitoring such as: education of the citizen about radon; reducing the level of radon if found too high; testing of radon in homes and pre-building steps to guide against radon in newly constructed buildings. For instance, in Italy, radon is measured yearly to avoid seasonal variation of result. Finland and Sweden adopt monthly radon measurement when heating appliances are used in buildings. Likewise, in Ireland and Britain, radon is measured at three months intervals and result addressed according to season whereas in the United States radon measurement is part of buying and selling criteria of houses [12]. Several measurement of radon has been done in Nigeria by several researchers [20-23,4,17]. Review work has been done in various part of the world on radon [24-29]. However, sparse data exist on radon awareness and perception of its health risk in various places including the research area. This research work would add to the work done, and the result contributes to the baseline data in the area.

2. METHODOLOGY

This study adopted descriptive research design of survey type. This design is suitable for this study because the study involves collection of information from a sample of University undergraduate students on their perceived risk of radon. The population of the study comprised of Undergraduate students of Adekunle Ajasin University, Akungba Akoko (AAUA), Ondo State, Nigeria. This study adopted simple random sampling technique to select one hundred (100) Undergraduate students from the six faculties in the University and the Faculties are: Science, Social Sciences, Education, Arts, Law and Agriculture. A semi-structured questionnaire was used in collecting data for this research, the

questionnaire was closed-ended type. It comprises of section A and B. The section A comprises of demographic information of the respondent while section B contains the items that asked for the opinion of the respondents on the subject matter, this gives them a restricted response on a four Likert scale of type SA-strongly agree, A-agree, D-disagree, SD-strongly disagree.

The study examined three research questions:

- What are the perception of AAUA undergraduate students towards radon?
- What are the barriers of radon testing among AAUA undergraduate students?
- What are the health effects of radon?

Copies of the questionnaire were personally respondents distributed to the by researchers, and efforts were made to see that the respondents understood the purpose of the study. Assistance was given where necessary in compliance with the instruction. At the end of the exercise copies of completed questionnaire administered were collected by the researcher immediately. The researcher made it clear to respondents that, they are free to decide on whatever information they wish to share with the researcher and that they are under no obligation to tick any answer of their choice. Descriptive analysis involving frequency count, percentages, mean and standard deviation were used to analyze research questions.

3. RESULTS AND DISCUSSION

3.1 Demographic Characteristics

The questions include Gender (male, female), Age (17-22, 23-27, 28-32) years, Faculty (Science, Social Sciences, Education, Arts, Law and Agriculture); Academic level (100, 200, 300, 400 and 500) Levels.

Table 1 shows that 100 undergraduate students of Adekunle Ajasin University, Akungba-Akoko participated in this study in which 49% of the respondents are males while 51% of the respondents are females. This shows majority are females. 37% of the respondents are within the age range of 17-22 years, 54% of the respondents are within the age range of 23-27 years, while 9% of the respondents are within the age range of 28-32 years.

30% of the respondents were drawn from the Faculty of Science, 20% of the respondents were drawn from the Faculty of Social Science, 15% of the respondents were drawn from the Faculty of Education, 15% were from the Faculty of Arts, 5% of the respondents were drawn from the Faculty of Law while 15% of the respondents were drawn from the Faculty of Agriculture. This implied that the majority of the respondents were drawn from the Faculty of Science. 31% of the respondents are 100 level students, 33% are 200

Table 1. The demographic characteristics of the undergraduates' students

Characteristics		Frequency	Percent (%)		
Gender	Male	49	49.0		
	Female	51	51.0		
	Total	100	100.0		
Age (years)	17-22	37	37.0		
	23-27	54	54		
	28-32	9	9.0		
Total		100	100		
Faculty	Science	30	30		
•	Social Science	20	20		
	Education	15	15		
	Arts	15	15		
	Law	5	5		
	Agriculture	15	15		
Academic level	100 L	31	31		
	200L	33	33		
	300L	21	21		
	400L	10	10		
	500L	5	5		

level students, 21% of the respondents are 300 level students, 10% of the respondents are 400 level students while 5% of the respondents are 500 level students. This simply shows that the majority of respondents are 200 level students.

3.2 Perception of AAUA Undergraduate Students towards Radon

Responders were asked about their knowledge of radon. The characteristics of radon were listed and participants responded on a 4 Likert scale of strongly agree, agree, disagree and strongly disagree.

The result in Table 2 revealed the perception of AAUA undergraduates students towards Radon with the weighted mean score of 1.77 which is lower than the standard mean score of 2.50. All of the items from 1-8 depict lower means scores of 1.5, 1.78, 1.65, 1.70, 1.65, 1.72, 2.06 and 2.10 respectively indicating that AAUA undergraduate students have negative perception towards radon. By adding the total number of disagree with strongly disagree; 97% does not know that radon is a decay product of uranium in the soil, 89% does not know that radon has no odour, 80% does not know that radon can be detected, 94% of the students does not know that smoking

increases the risk of getting lung cancer if exposed to radon, while 88% does not know high radon exposure could cause lung cancer, 80% does not know that building materials could be the source of radon in homes and 76% does know not how radon can enter their houses. The results obtained in this study is similar to what was obtained in a study conducted by Esan et al. [4] where knowledge of radon and its health risk was found to be low among the sampled populace.

3.3 Barriers to Radon Testing among AAUA Undergraduates

Responders were asked to indicate the barriers they might likely face, if to test for radon. They could choose from five barriers listed.

The result in Table 3 revealed the barriers to radon testing among AAUA undergraduate students, with a weighted mean score of 3.32 which is higher than the standard mean score of 2.50. All of the items from 9-13 depict higher means scores of 3.55, 3.48, 3.07, 3.17 and 3.31 which are higher than 2.50, indicating all items are barriers to radon testing among AAUA undergraduate students. Item 9 which has the highest mean score of 3.55 shows students indicated that the major barrier to radon testing is

Table 2. Perception of AAUA undergraduate students towards radon

S/N	Statements	Strongly Agree		Agree		Disagree		Strongly disagree		Mean
		No	%	No	%	No	%	No	%	\bar{x}
1	Radon is a decay product of uranium in the soil, water and Open air	2	2.0	1	1.0	42	42.0	55	55.0	1.5
2	Radon has no odour	6	6.0	5	5.0	50	50.0	39	39.0	1.78
3	Radon is in a gaseous form	12	12.0	8	8.0	35	35.0	45	45.0	1.65
4	Radon can be detected	3	3.0	5	5.0	51	51.0	41	41.0	1.70
5	Smoking increases the chances of getting Lung cancer from Radon	3	3.0	3	3.0	50	50.0	44	44.0	1.65
6	High radon exposure can cause Lung cancer	8	8.0	4	4.0	40	40.0	48	48.0	1.72
7	Building materials (such as concrete, stone and brick) could be the source of radon in our homes.	13	13.0	7	7.0	53	53.0	27	27.0	2.06
8	Radon can enter the house from the ground through cracks in concrete and breaking pipes	18	18.0	6	6.0	44	44.0	32	32.0	2.10
									_	

that they do not know where to buy a radon test kit. Adding the total number of agree with strongly agree; 93% believes testing for radon could be costly, 94% does not believe in the health effect of radon, 90% believes radon test results might not be reliable, 92% does know where to buy radon test kits while 88% does not know how to test their homes for radon. This study is consistent with the findings of Esan et al. [4] who found that about 74% of their study participants reported that their major barrier to

radon testing is abstract knowledge with regard to how and where to procure a radon test kit.

3.4 Health Effects of Radon

Participants was asked what health effect were associated with radon. Six options were provided but not all of them are radon induced health effect. This is to test the knowledge of the students whether they really know the health issue associated with radon.

Table 3. The barriers to radon testing among AAUA undergraduate students

S/N	Statements	Strongly Agree		Agree		Disagree		Strongly disagree		Mean
		No	%	No	%	No	%	No	%	\bar{x}
9	If I had a radon problem, it would be costly to fix.	65	65.0	28	28.0	4	4.0	3	3.0	3.55
10	I do not believe in the health effect of radon.	55	55.0	39	39.0	5	5.0	1	1.0	3.48
11	The results of radon tests are not reliable	23	23.0	67	67.0	4	4.0	6	6.0	3.07
12	I do not know where to buy a radon testing kit	40	40.0	52	52.0	3	3.0	5	5.0	3.17
13	I do not know how to test my home for radon.	50	50.0	38	38.0	5	5.0	7	7.0	3.31
	Weighted mean score = 3.32									

Table 4. The health effects of radon

S/ N	Statements	Strongly Agree		Agree		Disagree		Strongly disagree		Mean
		No	%	No	%	No	%	No	%	\bar{x}
14	Radon is a leading cause of Lung Cancer	49	49.0	42	42.0	3	3.0	6	6.0	3.34
15	Drinking water in which radon is dissolved, exposes the kidney and bone marrow to diseases or damage.	38	38.0	51	51.0	8	8.0	3	3.0	3.14
16	Radon causes Leukemia (blood cancer)	55	55.0	32	32.0	7	7.0	6	6.0	3.36
17	High level exposure to radon leads to cardiovascular (heart) diseases.	42	42.0	45	45.0	8	8.0	5	5.0	3.24
18	Exposure to radon causes damage to the skin cells	40	40.0	52	52.0	6	6.0	2	2.0	3.24
19	Breathing air that contains radon could cause Lung cancer	4	4.0	12	12.0	34	34.0	50	50.0	1.70
	Weighted mean score = 3.00									

The result in Table 4 revealed the health effects of radon, with a weighted mean score of 3.00 which is higher than the standard mean score of 2.50. All items from 14-18 depict higher means scores of 3.34, 3.14, 3.36, 3.24, and 3.24 respectively showing the students believed all items are the health effects of radon whereas only item 14 and 19 are the major health effects of radon. Adding agree with strongly agree, majority (91%) of the students believed radon is a leading cause of lung cancer while very few (20%) believed breathing air that contains radon could cause lung cancer. The contradictory response of the students in Table 4 shows that the students have negative perception to the health effects of radon. This result is consistent with the work of Smith, Martel, and Harding [5] where 80% could not identify radon as a risk factor for lung cancer and (Hazar et al. 2014; Khan, Gomes, and Krewski 2019) where the population did not consider radon exposure as their first priorities.

4. CONCLUSION

Research question one which stated that what is the Perception of AAUA undergraduate students radon. towards revealed that AAUA students undergraduate have negative perception towards radon as students indicated that they do not know that radon can enter the house from the ground through cracks in concrete and breaking pipes. Research question two which stated that what are the barriers to radon testing among AAUA undergraduate students? indicated that the major barrier to radon testing is that they do not know where to buy a radon test kit even if they had money to buy it. Research question three which stated what the health effects of radon are, revealed that the major health effect of radon is lung cancer. This study confirmed that the knowledge of undergraduate students of Adekunle Ajasin University, Akungba Akoko, about radon is very poor. The University management is therefore advised to create platform to increase awareness and sensitize the entire University community about radon.

DISCLAIMER (ARTIFICIAL INTELLIGENCE)

Author hereby declare that NO generative Al technologies such as Large Language Models (ChatGPT, COPILOT, etc) and text-to-image generators have been used during writing or editing of manuscripts.

COMPETING INTERESTS

Author has declared that no competing interests exist.

REFERENCES

- Khan Selim M, James Gomes, Daniel R. Krewski. Radon interventions around the globe: A Systematic Review. Heliyon. 2019;5(5):e01737.
 - Available:https://doi.org/10.1016/j.heliyon.2 019.e01737
- 2. Khan, Selim M. Residents ' perceptions of radon health risks: A Qualitative Study. 2019:1–11.
- Hazar Narjes.. Environmental health perceived risk of exposure to indoor residential radon and its relationship to willingness to Test among health care providers in Tehran. 2014;1–8.
- Esan Deborah T. Radon risk perception and barriers for residential radon testing in Southwestern Nigeria. Public Health in Practice. 2020;1:100036. Available:https://doi.org/10.1016/j.puhip.20 20.100036
- 5. Smith Jessica, Laura Martel, Garrett Harding. Public awareness and perceptions surrounding radon testing in a state with high radon emission potential and low smoking rates abstract. 2013;82 (3):8–17.
- Wang, Ying, Carole Ju, Alice D Stark, Nicholas teresi. Paper radon awareness, testing, and remediation survey among New York State Residents. (November 1995); 2000.
- 7. Duckworth L, Tammy. Relationship of perception of radon as a health risk and willingness to engage in radon testing and mitigation. 2002;29(7):1099–1107.
- Ononugbo CP, Avwiri GO. Estimation of lung cancer risk due to radon exposure in natural food spices. Archives of Current Research International. 2018;12(3):1-10. Available:https://doi.org/10.9734/ACRI/201 8/39504
- Asere AM, Ajayi IR. Exposure to radon as a public health issue- a review. Journal of Scientific Research and Reports 2015; 8(3):1-7.
 - Available:https://doi.org/10.9734/JSRR/20 15/18779.
- Appleton JD, Miles JC. A statistical evaluation of the geogenic controls on indoor radon concentrations and radon

- risk. Journal of Environmental Radioactivity. 2010;101(10):799-803.
- Irvine JL, Simms JA, Cholowsky NL, Pearson DD, Peters CE, Carlson LE, Goodarzi AA. Social factors and behavioural reactions to radon test outcomes underlie differences in radiation exposure dose, independent of household radon level. Scientific Reports. 2022;12 (1):15471.
- 12. Copes Ray, Emily Peterson. Indoor radon a public health perspective; 2014.
- Gandolfo Giada. Radiation protection considerations on radon and building materials radioactivity in near zero energy buildings. Energy Procedia. 2017;140:13– 22.
 - Available:https://doi.org/10.1016/j.egypro.2 017.11.119.
- Salih Najeba F, Murtadha Sh Aswood, Anees A. Hamzawi. Effect of porosity on evaluation of radon concentration in soil samples collected from sulaymania governorate, Iraq. Journal of Physics: Conference Series. 2019;1234(1).
- Tchorz-Trzeciakiewicz DE, Rysiukiewicz M. Ambient gamma dose rate as an indicator of geogenic radon potential. Science of the Total Environment. 2021; 755:142771.
 - Available:https://doi.org/10.1016/j.scitotenv.2020.142771.
- Syuryavin, Ahmad Ciptadi, Seongjin Park, Muttaqin Margo Nirwono, Sang Hoon Lee. Indoor radon and thoron from building materials: Analysis of Humidity, air exchange rate, and dose assessment." Nuclear Engineering and Technology. 2020;52(10):2370–78. Available:https://doi.org/10.1016/j.net.2020
 - .03.013.
- Usikalu MR. Monitoring of radon concentration for different building types in covenant university, Nigeria. Cogent Engineering. 2020;7(1).
- 18. McGrath, James A, Reihaneh Aghamolaei, James O'Donnell, Miriam A. Byrne. 2021. Factors influencing radon concentration during energy retrofitting in domestic buildings: A computational evaluation. Building and environment. 2021;194:107712.
 - Available:https://doi.org/10.1016/j.buildenv. 2021.107712.
- Rabi R, Oufni L, Amrane M. Modeling of indoor 222 rn distribution in ventilated room and resulting radiation doses

- measured in the respiratory tract. Journal of Radiation Research and Applied Sciences. 2017;10(3):273–82. Available:http://dx.doi.org/10.1016/j.jrras.2017.05.003.
- 20. Ademola, Janet A, Oluwaferanmi R, Ojeniran. Radon-222 from different sources of water and the assessment of health hazard. Journal of Water and Health. 2017;15(1):97–102.
- Ajiboye YO, Badmus O, Ojo, Isinkaye M. Measurement of radon concentration and radioactivity in soil samples of Aramoko, Ekiti State, Nigeria. International Journal of Public Health Research. 2016;4(5):37–41.
- 22. Asere Adeola, Isaac Ajayi. Estimation of indoor radon and its progeny in dwellings of akoko region, Ondo State, Southwestern Nigeria. Journal of Scientific Research and Reports. 2017; 14(3):1–7.
- 23. Asere AM, Ajayi IR, Agoyi AA, Okoye PC, Sedara SO, Oniya EO. Indoor radon levels and contributory factors in Southwest Nigeria. Journal of Nuclear Sciences. 2022;7(2):20–27.
- 24. Antignani Sara. A 10-year follow-up study of yearly indoor radon measurements in homes, review of other studies and implications on lung cancer risk estimates. Science of the Total Environment. 2021; 762:144150.
 - Available:https://doi.org/10.1016/j.scitotenv .2020.144150.
- 25. Jobbágy, Viktor, and Mikael Hult. Performance evaluation of a European scale proficiency test on radon-in-water measurements in Europe. Applied Radiation and Isotopes 160(December 2019); 2020.
- Martell, Meritxell. Evaluation of citizen science contributions to radon research."
 Journal of Environmental Radioactivity. 2021;237:106685.
 Available:https://doi.org/10.1016/j.jenvrad. 2021.106685.
- Nilsson Robert, Jian Tong. Opinion on reconsideration of lung cancer risk from domestic radon exposure. Radiation Medicine and Protection. 2020;1(1):48–54.
- 28. Perko, Tanja, Catrinel Turcanu. Is internet a missed opportunity? Evaluating radon websites from a stakeholder engagement perspective. Journal of Environmental Radioactivity. 2020;212.
- 29. Vogeltanz-holm Nancy, Gary G, Schwartz.

Radon and lung cancer: What does the public really know?" Journal of Environmental Radioactivity. 2018;192

(January):26–31. Available:https://doi.org/10.1016/j.jenvrad. 2018.05.017.

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of the publisher and/or the editor(s). This publisher and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

© Copyright (2024): Author(s). The licensee is the journal publisher. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here:
https://www.sdiarticle5.com/review-history/119346