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Abstract
The aim of this work is to study a class of problems for continuum models in mechanics. We
construct the MAC model for the parabolic equation which could include the physical solution
appying Newton’s law of cooling. A notion of a generalized solution is introduced. We apply
Galerkin method to prove the existence of a generalized solution. The proof of uniqueness of a
generalized solution is based on the obtained energy inequality.
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1 Introduction
To introduce the mathematical problem, consider the class of problems arising in mechanics [1].
Many continuum models in mechanics include contradictions in case of applied point boundary

conditions. The method of additional conditions or MAC can be applied to the boundary value
problems of mathematical physics in case if a classical solution does not exist or a nonphysical
solution is obtained. This method allows to transform the obtained nonphysical solution to the
physically acceptable form. The MAC was introduced in the scheme of Dugdale-Barrenblat [2,3]
in fracture mechanics. This scheme was applied to the linear elastic crack problem in which the linear
elastic solution has singularity near the tip of a crack. To avoid this singularity Dugdale and Barrenblat
introduced additional yield stresses near the tip. The applied nonsingular condition gave the size of
the zone, where the stresses are applied. This new condition gave the value of the applied additional
stresses, which are six times more then the given stresses at infinity. The stress concentration factor
corresponds to the experiments of Griffith’s and Inglis [4]. The MAC scheme was developed in [5],
where the MAC solution for the Laplace equation in an angle was considered.
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One of the possible MAC problems can be introduced as follows. Consider a body and take
some control volume which includes a fixed number of particles. The control volume is surrounded by
a control surface. The particles which are inside the control surface are called internal particles and
they belong to the control volume. The particles which are outside the control volume are the external
particles and they do not belong to the control volume. All other particles belong to the boundary
particles of the control volume. There are interactions between particles for example, according to
Newtons law of cooling; the resultant of interactions applied to all internal particles of the control
volume from the external particles is the internal body flux. The interactions applied to the boundary
particles of the control volume from the external particles are the surface fluxes. The Fourier law could
be accepted for the internal surface heat fluxes and the Newtons cooling law is taken to describe the
nonlocal body heat fluxes.

Consider the classical heat conduction problem with the equation according to [6]

k∆u− q0 + q1 = c0ρut, (1.1)

where ρ is the mass-density of the body per unit volume, c0 is the specific heat, k is the coefficient of
thermal conduction, q0 is a rate of internal body heat flux per unit volume, q1 is a rate of internal heat
generation per unit volume produced in the body. The introduced in (1.1) term q0 can be taken using
the Newtons law of cooling in the form

q0 =
1

V

∫
V

α (u(x, t)− u(ξ, t)) dξ,

where V is the volume of the body, α is a constant in Newtons law of cooling which can depend in
general on the coordinates of the body. The correspondent initial and boundary conditions should be
added to create a well posed initial boundary value problem. It was shown in [7] that heat problems
have nonphysical solution in case of a given point boundary condition.

In mathematical literature the equations of such type are called parabolic integro-differential or
loaded equations. Various classes of loaded equations were studied in [8]. Note here some recent
works dealing with parabolic integro-differential equations [9,10]. See also references therein.

Motivate by this, we consider a new MAC model for a parabolic equation in the form of integro-
differential equation which could include the physical solution into consideration.

2 Preliminaries
In the domain QT = {(x, t) : 0 < x < l, 0 < t < T} consider the equation

ut − (a(x, t)ux)x + u(x, t)− 1

l

∫ l

0

u(s, t) ds = f(x, t) (2.1)

subject to the initial condition
u(x, 0) = ϕ(x), x ∈ (0, l) (2.2)

and the boundary conditions
u(0, t) = 0, t ∈ (0, T ), (2.3)

u(l, t) = 0, t ∈ (0, T ). (2.4)

Denote

Φ =
1

l

∫ l

0

u(s, t) ds.

Let W 1
2 (QT ), W 1,0

2 (QT ) be the usual Sobolev spaces. We shall define

V2 =

{
u : u ∈W 1,0

2 , ||u||2 = |u|2 = ess sup
0≤t≤T

∫
Ω

u2 dx+

∫
QT

u2
x dx dt

}
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Ŵ 1
2 (QT ) =

{
u : u ∈W 1

2 (QT ), u(x, T ) = 0
}

First we introduce the notion of a generalized solution of the problem (2.1)–(2.4) using the standart
method [(10)]. Given that u(x, t) is a classical solution of the problem (2.1)–(2.4) we multiply both
sides of the identity (2.1) by some function η(x, t) ∈ Ŵ 1

2 (QT ), η(0, t) = η(l, t) = 0 and integrate the
obtained equality over QT∫

QT

(ut − (aux)x + u− Φ)η(x, t) dx dt =

∫
QT

f(x, t)η(x, t) dx dt

It follows from integration by parts in the first and the second terms, the conditions (2.2)–(2.4) and the
properties of the function η(x, t) that∫

QT

(−uηt + auxηx + uη − Φη) dx dt =

∫
QT

f(x, t)η(x, t) dx dt+

∫ l

0

ϕ(x)η(x, 0) dx (2.5)

Definition 2.1. We say that a function u(x, t) ∈ V2(QT ) is a generalized solution of the problem
(2.1)–(2.4) provided for any function η ∈ Ŵ 1

2 (QT ), η|ST = 0 the function u(x, t) satisfies the integral
identity (2.5).

3 Main Results
The main result of this work is the following statement.

Theorem 3.1. Let f(x, t) ∈ L2,1(QT ), ϕ(x) ∈ L2(0, l), a(x, t) ∈ C(QT ), ν
2
≤ a(x, t) ≤ µ. Then there

exists a unique generalized solution of the problem (2.1)–(2.4).

Proof. The proof of the thorem is organized as follows. In the first part we obtain the energy inequality
from which uniqueness of the solution of the problem (2.1)–(2.4) follows immediately. In the second
part applyng the Galerkin method we construct approximations to the generalized solution and use
apriori estimates to provide convergence of approximations. After that we justify that a limit of
approximations is the generalized solution of the (2.1)–(2.4).

1. Energy inequality. Let u(x, t) ∈W 1
2 (QT ) and satisfy the integral identity (2.5) for any function

η ∈ Ŵ 1
2 (QT ), η|QT = 0. We take

η(x, t) =

{
u(x, t), 0 < t < τ,

0, τ ≤ t < T,
where 0 < τ < T.

After inegration by parts in the first term in (2.5) with the chosen η we get∫ τ

0

∫ l

0

au2
x dx dt+

∫ τ

0

∫ l

0

u2 dx dt+
1

2

∫ l

0

u2(x, τ) dx−
∫ τ

0

∫ l

0

Φu dx dt =

=
1

2

∫ l

0

ϕ2(x) dx+

∫ τ

0

∫ l

0

fu dx dt.

Hence,
1

2

∫ l

0

u2(x, τ) dx+

∫ τ

0

∫ l

0

au2
x dx dt =

1

2

∫ l

0

ϕ2(x) dx+

∫ τ

0

∫ l

0

fu dx dt−

−
∫ τ

0

∫ l

0

u2 dx dt+

∫ τ

0

∫ l

0

Φu dx dt. (3.1)

Therefore, for the solution of the problem (2.1)–(2.4) u(x, t) ∈ W 1
2 (QT ) the integral identity (3.1)

is valid.
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Now, consider a functional sequence um ∈W 1
2 (QT ) which satisies (2.5) with the chosen η and hence,

it satisfies (3.1).
The set W 1

2 (QT ) is dense in V 1,0
2 and hence, it is dense in V2(QT ). Thus there exists a function

u∗ ∈ V2(QT ) such that
{
um → v∗

umx → v∗x
strongly in L2(QT ) as m → ∞. This implies that um → u∗

strongly in L2(QT ) as m → ∞. Hence, letting m → ∞ in the identity (3.1) for the functions um we
see that (3.1) is also valid for the function v∗ ∈ V2(QT ).

Therefore, if the function u ∈ V2(QT ) is a generalized solution of the problem (2.1)–(2.4) then it
satisfies the integral identity (3.1).
Now, we obtain the apriori estimate of the solution of the problem (2.1)–(2.4). Let u(x, t) be the
solution of the problem (2.1)–(2.4) and hence, the identity (3.1) holds.

1

2

∫ l

0

u2(x, τ) dx+

∫ τ

0

∫ l

0

au2
x dx dt =

1

2

∫ l

0

ϕ2(x) dx+

∫ τ

0

∫ l

0

fu dx dt−

−
∫ τ

0

∫ l

0

u2 dx dt+

∫ τ

0

∫ l

0

Φu dx dt, where 0 < τ < T.

First estimate the second term in the right-hand side of (3.1).∣∣∣∣∫ τ

0

∫
Ω

f(x, t)u(x, t) dx dt

∣∣∣∣ ≤ ∫ τ

0

(∫
Ω

f2 dx

)1/2(∫
Ω

u2 dx

)1/2

dt ≤

≤ max
0≤t≤τ

‖u‖L2(Ω)‖f‖2,1,Qτ . (3.2)

Second we estimate the fourth term in the right-hand side of (3.1) using the inequality |ab| ≤ 1

2ε
a2 +

ε

2
b2 and the Cauchy inequality as follows.∣∣∣∣∫ τ

0

∫ l

0

Φu dx dt

∣∣∣∣ =

∣∣∣∣1l
∫ τ

0

∫ l

0

u

∫ l

0

u(s, t) ds dx dt

∣∣∣∣ ≤
≤ 1

2l

∫ τ

0

∫ l

0

u2(x, t) dx dt+
1

2l

∫ τ

0

∫ l

0

(∫ l

0

u(s, t) ds

)2

dx dt ≤

≤ 1

2l

∫ τ

0

∫ l

0

u2(x, t) dx dt+
l

2

∫ τ

0

∫ l

0

u2 dx dt (3.3)

Therefore from (3.1), (3.2), (3) it follows that

1

2

∫ l

0

u2(x, τ) dx+

∫ τ

0

∫ l

0

ν

2
u2
x dx dt ≤

1

2

∫ l

0

ϕ2(x) dx+ max
0≤t≤τ

‖u‖L2(Ω)‖f‖2,1,Qτ+

+

∫ τ

0

∫ l

0

u2 dx dt+
1

2l

∫ τ

0

∫ l

0

u2(x, t) dx dt+
l

2

∫ τ

0

∫ l

0

u2 dx dt

And hence,∫ l

0

u2(x, τ) dx+ ν

∫ τ

0

∫ l

0

u2
x dx dt ≤

∫ l

0

ϕ2(x) dx+ 2 max
0≤t≤τ

‖u‖L2(Ω)‖f‖2,1,Qτ+

+ C

∫ τ

0

∫ l

0

u2 dx dt, where C = 2

(
1 +

1

2l
+
l

2

)
(3.4)

Follwing [11] we define y(τ) = max
0≤t≤τ

‖u‖L2(Ω). Then

∫ τ

0

∫ l

0

u2 dx dt =

∫ τ

0

‖u‖2L2(0,l) dt ≤ τy2(τ), (3.5)
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‖ϕ‖2L2(0,l) =

∫ l

0

ϕ2 dx =

∫ l

0

u2(x, 0) dx =

(∫ l

0

u2(x, 0) dx

)1/2

×

×
(∫ l

0

u2(x, 0) dx

)1/2

≤ max
0≤t≤τ

‖u‖L2(0,l)‖u(x, 0)‖L2(0,l) =

= y(τ)‖ϕ‖L2(0,l). (3.6)
Using (3.4), (3.5), (3.6) we obtain∫ l

0

u2(x, τ) dx+ 2ν

∫ τ

0

∫ l

0

u2
x dx dt ≤ y(τ)

(
‖ϕ‖L2(0,l) + 2‖f‖2,1,Qτ

)
+

+ Cτy2(τ). (3.7)
This implies that

‖u‖2L2(0,l) ≤ y(τ)
(
‖ϕ‖L2(0,l) + 2‖f‖2,1,Qτ

)
+ Cτy2(τ).

Hence,
y2(τ) ≤ y(τ)(‖ϕ‖L2(0,l) + 2‖f‖2,1,Qτ ) + Cτy2(τ) (3.8)

And
y(τ) ≤

√
y(τ)

(
‖ϕ‖L2(Ω) + 2‖f‖2,1,Qτ

)1/2
+
√
Cτy(τ). (3.9)

Also the inequality (3.7) implies that

‖ux‖ ≤
√
y(τ)

(
‖ϕ‖L2(0,l) + 2‖f‖2,1,Qτ

)1/2
ν−1/2+

+ ν−1/2
√
Cτy(τ). (3.10)

Therefore, the estimates (3.9), (3.10) give us

|u|Qτ ≤ (1 + ν−1/2)
(
‖ϕ‖L2(0,l) + 2‖f‖2,1,Qτ

)1/2 |u|1/2Qτ
+

+(1 + ν−1/2)
√
Cτ |u|Qτ .

Then for τ < τ1 ≡
ν

C(
√
ν + 1)2

we have

√
ν − (1 +

√
ν)
√
Cτ√

ν
|u|1/2Qτ

≤
√
ν + 1√
ν

(
‖ϕ‖L2(0,l) + 2‖f‖2,1,Qτ

)1/2
.

And hence,

|u|Qτ ≤
(1 +

√
ν)2

(
√
ν − (1 +

√
ν)
√
Cτ)2

(
‖ϕ‖L2(0,l) + 2‖f‖2,1,Qτ

)
, τ < τ1. (3.11)

Split the segment [0, T ] into the intervals 41 =
[
0,
τ1
2

]
, 42 =

[τ1
2
, τ1
]
, . . . , 4N with the length

less than
τ1
2

. Then the estimate (3.11) is valid for each interval 4i and

|u|Qτ ≤
(1 +

√
ν)2

(
√
ν − (1 +

√
ν)
√
Cτ)2

(
‖ϕ‖L2(Ω) + 2‖f‖2,1,Qτ

)
, ∀τ ∈ [0, T ].

Finally, we have
|u|Qτ ≤ F (τ), ∀τ ∈ [0, T ], (3.12)

where F (τ) =
(1 +

√
ν)2

(
√
ν − (1 +

√
ν)
√
Cτ)2

(
‖ϕ‖L2(Ω) + 2‖f‖2,1,Qτ

)
.

The inequality (3.12) implies that there exists at most one solution of the problem (2.1)–(2.4).
2. Existence. Let {ϕk(x)} ∈ C2(Ω) be a basis in W 2

2 (Ω), We define approximations uN (x, t) by

uN (x, t) =

N∑
k=1

cNk (t)ϕk(x), (3.13)
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where ck(t) are solutions to the Cauchy problem

d

dt
(uN , ϕm) + (a(x, t)uNx , ϕmx) + (uN , ϕm)−

−
(

1

l

∫ l

0

uN (s, t) ds, ϕm

)
= (f, ϕm),m = 1, . . . , N, (3.14)

cNm(0) = (ϕ, ϕm). (3.15)

We write the Cauchy problem (3.14)-(3.15) such that

d

dt
cNm(t) +

N∑
k=1

cNk Gkm(t) = fm(t), (3.16)

where

Gkm(t) =

∫ l

0

(aϕk x(x)ϕmx(x) + ϕk(x)ϕm(x)) dx− 1

l

(∫ l

0

ϕk(x) dx

)(∫ l

0

ϕm(x) dx

)
,

fm(t) =

∫ l

0

f(x, t)ϕm(x) dx.

Under the hypothesis of the theorem coefficients Gkm are bounded and fk ∈ L1(0, T ). Thus the
Cauchy problem has a unique solution ck ∈ W 1

2 (0, T ) for everyN and all the approximations (3.13)
are defined.

Multiplying (3.16) by ϕm(x), summing up from k = 1 to k = N and integrating with respect to t
from 0 to τ , we obtain the equality (3.1) for the functions {uN}.As it was shown in the first part this
implies that

|uN |V2(QT ) ≤ F (T ),

where F (T ) > 0 and does not depend on N .
Next, it is nessesary to show that we can extract from the sequence uN a subsequence which

converges weakly in L2(QT ) and uniformly with respect to t ∈ [0, T ]. To this end prove that the
functions lN,k(t) = (vN (x, t), ϕk(x)) converge uniformly on [0, T ].

The estimate (3.12) implies that the functions lN,k(t) are bounded uniformly. We need to prove
that lN,k(t) are equicontinuous on [0, T ] with a fixed k and an arbitrary N ≥ k, that is, |lN,k(t+4t)−
lN,k(t)| → 0 as 4t→ 0.
From (3.14) we have

|lN,k(t+4t)− lN,k(t)| ≤
∫ t+4t

t

∣∣∣(auNx , ϕk x)
∣∣∣ dt+

∫ t+4t

t

(∣∣∣(uN , ϕk)
∣∣∣+ |(f, ϕk)|

)
dt+

+

∣∣∣∣1l
∫ l

0

∫ t+4t

0

∫ l

0

uN (s, t) ds dtϕk(x) dx

∣∣∣∣ ≤ ε(4t)‖ϕk‖,
where ε(4t)→ 0 as4t→ 0 and does not depend onN . Hence, the functions lN,k, N = k, k+1, . . . ,
are equicontinuous with respect to t and furthermore there exists a subsequence lNr,k that converges
uniformly on [0, T ] to some continuous function lk(t) for each k.

We define u =
∞∑
k=1

lk(t)ϕk(x) and show that a subsequence uNr converges to u(x, t) weakly in

L2(Ω) and uniformly with respect to t ∈ [0, T ].
Let ϕ(x) ∈ L2(Ω). Consider

(uNr − u, ϕ) =

(
uNr − v,

∞∑
k=1

(ϕ,ϕk)ϕk

)
=

s∑
k=1

(ϕ,ϕk)(uNr − u, ϕk)+
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+

(
uNr − u,

∞∑
k=s+1

(ϕ,ϕk)ϕk

)
. (3.17)

Applying the Cauchy inequality we obtain∣∣∣∣∣
(
uNr − u,

∞∑
k=s+1

(ϕ,ϕk)ϕk

)∣∣∣∣∣
2

≤ ‖uNr − u‖2
∥∥∥∥∥
∞∑

k=s+1

(ϕ,ϕk)ϕk

∥∥∥∥∥
2

=

= ‖uNr − u‖2
(

∞∑
k=s+1

(ϕ,ϕk)ϕk,

∞∑
k=s+1

(ϕ,ϕk)ϕk

)
=

= ‖uNr − u‖2
(

∞∑
k=s+1

(ϕ,ϕk)2

)
≤MR(s),

where R(s) is the residial of the convergent Fourier series and M does not depend on Nr.
Then for a given ε > 0 there exists such s that MR(s) < ε.

Furthermore,
s∑

k=1

(ϕ,ϕk)(uNr − u, ϕk) =

s∑
k=1

(ϕ,ϕk)((uNr , ϕk)− (u, ϕk)) =

=

s∑
k=1

(ϕ,ϕk)(lNr,k − lk).

As lNr,k converges uniformly to lk on [0, T ], so for a fixed s the sum
s∑

k=1

(ϕ,ϕk)(lNl,k− lk) < ε for

all t ∈ [0, T ].
Hence, |(uNr − u, ϕ)| < ε for all t ∈ [0, T ] and the sequaence uNr converges weakly to u(x, t) in

L2(Ω) and uniformly with respect to t ∈ [0, T ].
Therefore, there exists a subsequence of {uNr} which weakly converges to u in L2(QT ) together

with its derivatives uNrx . Using the weak convergence one concludes that the limit function also
satisfies |u|QT ≤ Const and u ∈ V2(QT ).

We need only to show that this limit function u is a required generalized solution. To show that
(2.5) is valid we multiply (3.14) by a smooth function dm(t), dm(T ) = 0, take the sum from m = 1 to
m = N ′ < N and integrate with respect to t from 0 to T . This leads us to the equality∫

QT

(
−uNΨN′

t + auNx ΨN′
x + uNΨN′

− ΦNΨN′)
dx dt =

∫
QT

fΨN′
dx dt+

∫
Ω

ϕΨN′
(x, 0) dx,

(3.18)

where ΨN′
(x, t) =

N′∑
m=1

dm(t)ϕm(x).

Taking into account the proved above convergence one can pass to the limit in (3.18) as Nr →∞ for
fixed N ′ and obtain the equality (2.5 for the function u(x, t) ∈ V2(QT ).∫

QT

(
−vΨN′

t + aijvxiΨ
N′
xj + avΨN′

− ΦΨN′
t + aijΦxiΨ

N′
xj + aΦΨN′)

dx dt =

=

∫
QT

fΨN′
dx dt+

∫
Ω

ϕΨN′
(x, 0) dx. (3.19)

As the set of functions Φ =

∞⋃
N′=1

ΦN
′

is dense in Ŵ 1
2 (QT ) , it follows that the limit relation (3.19)

is fulfilled for every function Φ(x, t) ∈ Ŵ 1
2 (QT ) and hence, u is the solution of the problem (2.1)–

(2.4).
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4 Conclusions
This paper describes the problem which arises from the application of the MAC method in mechanics.
The MAC model for the parabolic equation which has the form of the integro-differential equation
is considered. A generalized solution of the problem is studied. The main results are the obtained
uniqueness and existence of the generalized solution. To prove these results we use Galerkin method
and method of apriory estimates.
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