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Abstract

The detections of gravitational waves (GWs) produced in mergers of binary black holes (BHs) and neutron stars
(NSs) by LIGO/Virgo have stimulated interest in the origin of the progenitor binaries. Dense stellar systems—
globular and nuclear star clusters—are natural sites of compact object binary formation and evolution toward
merger. Here we explore a new channel for the production of binary mergers in clusters, in which the tidal field of
the cluster secularly drives the binary to high eccentricity (even in the absence of a central massive BH) until GW
emission becomes important. We employ the recently developed secular theory of cluster tide-driven binary
evolution to compute present day merger rates for BH–BH, NS–BH, and NS–NS binaries, varying cluster potential
and central concentration of the binary population (but ignoring cluster evolution and stellar flybys for now).
Unlike other mechanisms, this new dynamical channel can produce a significant number of mergers out to cluster-
centric distances of several parsecs. For NS–NS binaries we find merger rates in the range of 0.01–0.07 Gpc−3 yr−1

from globular clusters and 0.1–0.2 Gpc−3 yr−1 from cusped nuclear clusters. For NS–BH and BH–BH binaries we
find small merger rates from globular clusters, but a rate of 0.1–0.2 Gpc−3 yr−1 from cusped nuclear clusters,
contributing to the observed LIGO/Virgo rate at the level of several percent. Therefore, cluster tide-driven mergers
constitute a new channel that can be further explored with current and future GW detectors.

Unified Astronomy Thesaurus concepts: Compact binary stars (283); Relativistic binary stars (1386); Gravitational
wave sources (677); Celestial mechanics (211); Star clusters (1567); Globular star clusters (656); LIGO (920);
Astrodynamics (76)

1. Introduction

The detection of gravitational waves (GWs) produced in
mergers of binaries composed of compact objects—black holes
(BHs) and neutron stars (NSs)—by the LIGO/Virgo collaboration
(The LIGO Scientific Collaboration et al. 2018; Venumadhav et al.
2019) naturally raised the question of the origin and evolutionary
pathways of these systems. While individual NSs and BHs are the
known end states of the collapse of massive stars, the dominant
mechanisms by which they combine into small-separation binaries
and finally merge are still uncertain. Small separation is the key,
because, e.g., a circular binary composed of two 30Me BHs can
merge via GW emission in a Hubble time only if it has an initial
semimajor axis of 0.2 au.

One possible channel by which a small semimajor axis can
be achieved is stellar evolution of binaries composed of two
massive stars, e.g., through a common-envelope phase
(Paczynski 1971; Tutukov & Yungelson 1973; Iben &
Livio 1993; Taam & Sandquist 2000; Kalogera et al. 2007;
Belczynski et al. 2016), or through chemically homogeneous
evolution as a result of rapid rotational mixing (Mandel & de
Mink 2016). A different channel is provided by secular
dynamics of compact object binaries in triples (Antonini et al.
2014, 2016; Liu & Lai 2017; Silsbee & Tremaine 2017): an
inner binary can be torqued by its tertiary companion into
performing Lidov–Kozai (LK) oscillations (Kozai 1962;
Lidov 1962), forcing it to very high eccentricity and thereby
boosting the rate of GW emission and shrinking its
semimajor axis.

Dense stellar clusters provide several alternative avenues for
the formation of compact object binaries. Three- and four-body
encounters in the dense environments of clusters greatly

enhance the binary NS formation rate dynamically: the
abundance per unit mass of low-mass X-ray binaries is around
102 times higher in globular clusters, and 103 times higher in
the central parsec of the Galaxy, than it is in the Galactic field
(Clark 1975; Katz 1975; Generozov et al. 2018). Similarly,
BH–BH binaries should form dynamically in cluster cores
provided the BHs are retained in their clusters at birth
(Portegies Zwart & McMillan 2000; O’Leary et al. 2006;
Antonini et al. 2016; Rodriguez et al. 2016). This possibility is
supported by the recent discovery of a detached binary
consisting of a BH and a main-sequence turnoff star in the
globular cluster NGC 3201 (Giesers et al. 2018).
As the majority of dynamically formed relativistic binaries

are too wide to merge via GW emission within a Hubble time,
it is not enough to explain how they form: one must also
explain how they shrink. Frequent stellar encounters can
harden binaries in cluster cores, leading to eventual mergers
that might occur after the binary is ejected from the cluster
(Antonini & Rasio 2016; Leigh et al. 2018). For binaries in
nuclear star clusters, a central supermassive BH (SMBH), if
present, can play the role of the tertiary driving LK oscillations
and orbital decay (e.g., Antonini & Perets 2012; Petrovich &
Antonini 2017; Hamers et al. 2018), similar to triples in
the field.
However, so far no studies have accounted for the direct effect

of the tidal field of the dense cluster to which the binary belongs
on the evolution of its orbital elements (although studies of Oort
comet dynamics have routinely accounted for the Galactic tide—
see, e.g., Heisler & Tremaine 1986; Matese & Whitmire 1996).
Recently in Hamilton & Rafikov (2019a, 2019b)—hereafter
“Paper I” and “Paper II” respectively—we showed that the
smooth tidal potential of a host star cluster can drive wide binaries
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to perform LK-like secular eccentricity oscillations on timescales
that could be relevant for the production of LIGO sources. In this
Letter we explore the consequences of this mechanism for
the merger rate of compact object binaries (Section 4), under the
simplifying assumption that they orbit spherical star clusters and
their dynamics are driven only by the smooth, time-independent
cluster potential (i.e., we neglect the effects of flyby encounters,
dynamical friction, etc., which are discussed in Section 5).

2. Dynamical Framework

We consider a compact object binary with component
masses m1, m2 orbiting in a fixed smooth background potential
Φ of a spherically symmetric star cluster (globular or nuclear).
Spherical symmetry implies that the binary’s “outer” bary-
centric orbit is confined to a plane, which we define as the
(X, Y) plane, and typically densely fills an axisymmetric
annulus in this plane with inner and outer radii (rp, ra). The
binary’s “inner” orbit (i.e., the motion of m1 and m2 around
each other) is described by the usual orbital elements:
semimajor axis a, eccentricity e, inclination i (measured
relative to the outer orbital plane), longitude of the ascending
node Ω (relative to the X axis, which is fixed in the cluster
frame), and argument of pericenter ω.

We showed in Paper I that the dynamical evolution of the
binary’s inner orbital elements is governed by the secular
(“doubly averaged,” hereafter DA) perturbing Hamiltonian3

( ) ( )= +H
Aa

H H
8

, 1
2

1 GR* *

where A is a constant (with units of s−2). Here H1* and HGR* are
the dimensionless Hamiltonians accounting for quadrupole-
order cluster tides and general relativistic (GR) pericenter
precession, respectively:

( )( ) ( )w= + - G - GH e i e i2 3 1 3 cos 15 sin cos 2 , 21
2 2 2 2*

( ) ( )= - - -H e1 , 3GR GR
2 1 2*

where Γ is a dimensionless parameter discussed below, and the
relative strength of GR precession is measured by another
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In the numerical estimate (5) we have assumed that the binary
is orbiting a spherical cluster with scale radius b and total
mass M and introduced a further dimensionless parameter

( )ºA A GM b3* (which is a natural scaling for A, see
Paper I).

The parameter A (or A*) measures the strength of the tidal
torque and sets the timescale for secular evolution, tsec∼n/A
(Paper II), where [ ( ) ]= +n G m m a1 2

3 1 2 is the binary’s

mean motion. The value of A* is fully determined by stipulating
the cluster potential Φ and the peri/apocenter ( )r r,p a of the
binary’s outer orbit. In Figure 1(b) we plot ( )A R* assuming a
circular outer orbit of radius R in Plummer (cored) and
Hernquist (cusped, with density r µ -r 1 for r→0) potentials

( ) ( ) ( )F = -
+

F = -
+

r
GM

b r
r

GM

b r
, , 6Plum

Plum
2 2

Hern
Hern

where M is the total mass of the cluster and bPlum Hern are
the corresponding scale radii. We choose bPlum=1 pc and
bHern=0.544 pc, respectively, so that the two potentials have
the same half mass–radius rh=1.31 pc.
The tidal Hamiltonian (2) differs from the dimensionless LK

Hamiltonian only through the parameter Γ, which is the key
characteristic of cluster tide-driven secular dynamics. Its value
is also fully determined (like that of A) by stipulating Φ and
( )r r,p a . For binaries in realistic spherical clusters we always
have 0<Γ�1 (Paper I), while the LK Hamiltonian is exactly
recovered when Γ=1. Figure 1(a) shows the profiles of Γ(R)
in clusters with Plummer and Hernquist potentials.
Papers I and II focused almost exclusively on exploring the

dynamics arising from the tidal Hamiltonian (2), ignoring GR
precession. A key conclusion of these studies was that high
eccentricities can be reached by binaries sufficiently inclined
with respect to their outer orbital plane for a range of Γ values.
However, due to a bifurcation in the dynamical phase portrait,

Figure 1. Plots of the parameters Γ and A* (see the text) assuming the binary is
on a circular outer orbit of radius R in Plummer (red) and Hernquist (green)
potentials each with half-mass–radius 1.31 pc. For initial inclinations close to
90°, high eccentricity excitation is readily achieved when Γ>1/5, but is much
rarer when Γ<1/5 (shaded region in panel (a)).

3 The Hamiltonian is “doubly averaged” in the sense that it is derived by
integrating first over the inner Keplerian orbit of the binary components about
their common barycenter, and then again over many outer orbits of the binary
itself around its host cluster.
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very high eccentricity is much more readily achieved by
binaries with Γ>1/5 than those with Γ<1/5. Therefore,
according to Figure 1, high eccentricity should be easier to
reach in cusped (e.g., Hernquist) clusters.

To compute merger rates due to cluster tides the “doubly
averaged” calculations of Papers I and II need to be extended
by accounting for two additional effects. First, GR precession
(embodied in the term (3)) typically acts to promote faster
evolution of ω, quenching the cluster tide-driven eccentricity
oscillations (see, e.g., Fabrycky & Tremaine 2007 for a
discussion in the LK limit, Γ=1). Reaching high e in the
presence of GR precession necessarily requires a sufficiently
dense/massive cluster. Empirically, we find that one should not
expect high eccentricity oscillations to arise whenever
  10GR . This requirement severely constrains the parameter
space of initial conditions that can lead to GW-assisted
mergers.

Second, fluctuations in the tidal torque felt by the binary on
the timescale of its outer orbital period (which are ignored by
double-averaging) can increase a binary’s maximum eccen-
tricity (Ivanov et al. 2005; Katz & Dong 2012; Luo et al. 2016;
Grishin et al. 2018). These short-timescale fluctuations (some-
times called “singly averaged effects”) can greatly enhance
merger rates. Roughly speaking, one can think of them as
modifying the maximum eccentricity reached by the binary
from emax to ˜ d= +e e emax max , δe>0. We take this effect into
account in our calculations (see below).

3. Calculation of the Merger Fractions

The main goal of this work is to compute the present day
merger rate induced by cluster tides. Its calculation in Section 4
relies on knowledge of the time evolution of the merger
fraction fm(t), which is found by taking a large ensemble of
binaries and computing how many of them merge in a time
Tm<t. Here we outline the details of the calculation, namely,
our merger time prescription (Section 3.1), the method used
(Section 3.2), and the results (Section 3.3).

3.1. Merger Time Tm

An isolated binary (in the absence of cluster tides) with
initial semimajor axis a0 and eccentricity e0≈1 would merge
due to GW emission in a time (Peters 1964):

( )
( )

( ) ( )=
+

-T e
c a

G m m m m
e
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4
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1 2 1 2
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However, the torque from the cluster potential causes the
binary’s eccentricity to vary in a cyclic fashion on a secular
timescale tsec, with e→1 under favorable circumstances.
Because of the steep dependence of Tm

iso on 1− e, GW
emission occurs in the form of discrete bursts around the sharp
eccentricity maxima. Such high-e episodes last for about

( )D » -t t e1max sec max
2 1 2 , where emax is the maximum

eccentricity obtained in the DA theory (a result derived in
Section 6.2 of Paper II, and routinely used in LK studies, e.g.,
Miller & Hamilton 2002). This prolongs the time to merger
(estimated using Equation (7) at peak eccentricity) by a factor

( )» D = - -t t e1sec max max
2 1 2 , see Equation (8).

Moreover, as e passes through its peak value it also
experiences short-term oscillations due to singly averaged
effects. These variations periodically take e to its peak singly
averaged value ẽmax, which is higher than the DA value emax.

Again, because of the sharp dependence of GW emission on
1− e, GW losses mainly occur when ˜»e emax. For this reason,
to approximately account for the singly averaged effects we set
the peak eccentricity determining the intensity of GW emission
to ẽmax (rather than emax) and obtain the following estimate of
the merger time:

( ˜ ) ( ) ( )» ´ - -T T e e1 8m m
iso

max max
2 1 2

⎜ ⎟

⎜ ⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝

⎞
⎠

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝

⎞
⎠

( )
( ˜ )

( ˜ )

( ˜ ) ( )





y

y

y

=
+

=

=

-

-

-

-

c a

G m m m m
e e

m

M

a e e

m

M

a e e

3

85
,

1.0 Gyr
1.4 10 au

,

10

0.5 Gyr
30 30 au

,

10
, 9

5
0
4

3
1 2 1 2

max max

3
0

4
max max

12

3
0

4
max max

12

where ( ˜ ) ( ) ( )y = - - -e e e e, 1 1max max max
2 7 2

max
2 1 2 . In the

numerical estimates we used typical values for NS–NS and
BH–BH binaries with m1=m2=m. Note that Tm is
independent of the secular period tsec.
Equation (9) is what we use in this work for Tm; it provides

an estimate of the merger time accurate up to a factor of order
unity (although see the end of Section 3.2). A similar result for
Tm, but neglecting singly averaged effects4 (i.e., with
 =e emax max), has been previously used by several authors to
calculate merger times of binaries driven to high eccentricity
via the LK mechanism (Thompson 2011; Antonini &
Perets 2012; Grishin et al. 2018; Liu & Lai 2018; Randall &
Xianyu 2018).

3.2. Method

To compute the merger fraction fm(t), it is necessary that we
are first able to calculate emax and emax for any binary. For a
given cluster potential, both emax and emax are functions of the
eight parameters that describe the inner (a, e, i, ω) and outer
(r r,p a) orbits of the binary at t=0 and the binary component
masses, e.g.,

( ) ( )w=e e r r a e i m m, , , , , , , . 10max max p a 0 0 0 0 1 2

We obtain emax from our secular (DA) theory including GR
precession by solving Equation (55) of Paper II for the value

= -j e1min max
2 at which the binary’s dimensionless angular

momentum j reaches its minimum. Our prescription for the
amplitude δe of short-timescale fluctuations entering emax—

which is an approximate analytic expression similar to
Equation (B14) of Ivanov et al. (2005; see also Grishin et al.
2018)—is provided in C. Hamilton & R. R. Rafikov (2019, in
preparation).
Then at each time t, for a given a0, m1, and m2 there exists a

critical region in ( )e e,max max space for which Tm<t
(Equation (8)). All systems in the critical region can be
considered “merged” at time t. With a suitable Monte Carlo
sampling of the eight parameters listed in (10) one can
therefore compute the cumulative fraction fm(t) of systems that
have merged as a function of time. To carry out the Monte

4 We examine the impact of neglecting singly averaged eccentricity
fluctuations in C. Hamilton & R. R. Rafikov (2019, in preparation).
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Carlo procedure we draw a large number5 N=106 of binaries
with initial parameters randomly chosen from appropriate
distributions described as follows.

Our compact object binaries come in three flavors: NS–NS,
NS–BH, and BH–BH. For the component masses m1, m2 we
always use 1.4Me (NS) and 30Me (BH). We use three cluster
masses: =M M10 , 10 , 105 6 7 . We consider two cluster
potentials, the same as in Figure 1: the Plummer potential
ΦPlum to mimic cored potentials of globular clusters and the
Hernquist potential ΦHern to approximate cusped nuclear
clusters. Each of them is scaled to have half mass–radius
rh=1.31 pc.

We randomly sample rp and ra (which characterize the
binary’s outer orbit) from a self-consistent distribution function
(DF) constructed as follows. We take the isotropic self-
consistent DF ( ( ) )g r b r b b, ,p a that generates the underlying
cluster potential with mass M and scale radius b, where

( ) º  GM b and  is the specific energy of an orbit in that
potential. Thus, ( ) ( ) µ -- g b b, Plum Plum

3 2 7 2 for the Plummer
potential, while for the Hernquist potential ( )g b, Hern is
given by Equation (4.51) of Binney & Tremaine (2008).
We then draw the orbits of our binaries from a DF

( ( ) )µ ¢ ¢ ¢g r b r b b, ,p a , where the new scale radius b′ is a
parameter that we vary to account for the possibility of the
massive compact object binaries being more centrally con-
centrated than the underlying stellar population (we leave the
scale radius b of the cluster potential unchanged). We choose
three values of b′ such that the corresponding central over-
concentration ( ) ( )r rº ¢c b b0, 0, —ratio of the central

densities computed from the DFs ( ) ¢g b, and ( )g b, —is
equal to 1, 10, and 100. Hence for c=1 the binaries are
essentially tracer particles drawn from the underlying stellar
population, while for c ? 1 they are much more centrally
concentrated. In the Plummer case this requires
¢ = -b b 1, 10Plum

1 3 and 10−2/3, while for the Hernquist
sphere we must take ¢ = -b b 1, 10Hern

1 2 and 10−1. Variation
of c helps to alleviate the observational uncertainty in the radial
distribution of compact object binaries in clusters.
We assume Opik’s law for the distribution of binary

semimajor axes ( µ -dN da a0 0
1), sampling it in the range

( )Îa a a,0 min max . Here amin is the semimajor axis below which
GR precession will suppress cluster tide-driven evolution; we
estimate amin by solving Equation (5) for a with òGR=10 and
A*=1.0. We take amax=50 au, 100 au, 100 au for NS–NS,
NS–BH, and BH–BH binaries, respectively, expecting that
wider binaries would be quickly disrupted by stellar encoun-
ters. Initial binary eccentricities are drawn from a thermal
distribution (uniform in e0

2) in the range ( )Îe 0.01, 0.9950 .
We assume random orientation of the binaries, implying that

the initial pericenter angles ω0 and initial cosines of inclination
icos 0 are uniformly distributed in (−π, π) and (0, 1)

respectively. However, the symmetry of the problem means
that we may restrict the random sampling of ω0 to the range (0,
π), allowing us to speed up the calculation. Moreover, only
binaries with initial inclinations i0 close to 90° are able to
merge within a Hubble time. This result follows from
the conservation of ( )- e i1 cos2 1 2 (i.e., the z-component of
the binary’s inner orbital angular momentum, see Paper I) and
the fact that very high eccentricities (emax→1) are required to
enhance GW emission. Hence it is sufficient to sample icos 0
from a uniform distribution not in (0, 1) but (0, κ), where we

Figure 2. Cumulative merger fraction fm(t) over the domain tä(1 Myr, 12 Gyr) for NS–NS, NS–BH, and BH–BH binaries, each for cluster masses M/Me=105,
106, 107 and binary central concentrations c=1, 10, 100 in the Plummer and Hernquist potentials (see the legend).

5 We checked that a “higher resolution” calculation that sampled N=107

binaries gave essentially identical results.
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took κ=0.05, 0.08, 0.1 for NS–NS, NS–BH, and BH–BH
binaries, respectively.6

When calculating merger fractions fm we account for the
aforementioned truncation of the ranges of wa e i, , , cos0 0 0 0. In
particular we assume that the overall population of binaries has
a minimum semimajor axis 0.2 au (whereas it is only sampled
down to amin), while the maximum semimajor axis is still amax,
and weight the number of merged binaries accordingly.
Similarly, in reality ( )Îicos 0, 10 , but binaries in (κ, 1) never
merge. The values of fm(t) we quote always reflect the fraction
of the total population that has merged in time t, not just of the
initial N sampled binaries.

Implicit in the derivation of the merger time Tm is the
assumption that the binary undergoes at least one secular cycle
by time t. However, Equation (9) sometimes predicts merger
times that are short compared to the secular timescale tsec. Since
binaries must first reach their maximum eccentricity before
they can actually merge, which on average takes ≈tsec/2, we
account for these “fast” mergers by taking the actual merger
time to be ( )T tmax , 2m sec .

3.3. Merger Fraction Results

In Figure 2 we plot the cumulative merger fractions ( )f tm for
( )Ît 1 Myr, 12 Gyr , calculated using the method of

Section 3.2. We consider NS–NS (left column), NS–BH
(middle column), and BH–BH (right column) binaries, each for

=M M105 (green), =M M106 (red), and =M M107

(blue) clusters and concentrations c=1, 10, 100 (solid,
dotted–dashed, and dashed lines respectively), for the two
potentials (6).

3.3.1. Cored (Plummer) Models

Starting with the Plummer models (top row of Figure 2), we
see that fm is largest for the most massive clusters
( =M M107 , blue lines) because the secular evolution is
fastest in such clusters and therefore large eccentricity
oscillations are less easily quenched by GR precession. For
NS–NS binaries with central concentration c=1, the final
merger fraction is ( ) ~ -f 12 Gyr 10m

3 in =M M107 clusters.
The corresponding result for NS–BH and BH–BH binaries is a
factor of a few smaller because of the stronger GR precession
barrier for these more massive systems. In =M M106

clusters (red lines), we again find a nonnegligible final
NS–NS merger fraction, ( ) ~ -f 12 Gyr 10 ;m

4 however, we
find no NS–BH and BH–BH mergers, because for those
(heavy) binaries the cluster tides are no longer strong enough to
beat the GR precession. For the same reason, fm is negligible in
cored (Plummer) =M M105 clusters across all binary
flavors.

In all three panels, increasing the central concentration c
reduces the merger fraction because strongly centrally
concentrated binaries in cored potentials fall into the Γ<1/
5 regime (see Figure 1) for which high eccentricity excitation is
suppressed (Paper II). Mass segregation of a population of
heavy binaries would act to steadily increase c(t) over the age
of the cluster. In cored clusters this would lead to a lower
merger fraction at late times compared to an unsegregated
population.

3.3.2. Cusped (Hernquist) Models

Cusped clusters represented by a Hernquist potential (bottom
row of Figure 2) exhibit substantially higher fm values than in
the Plummer case. Indeed, even M105 clusters (green curves)
—which produced zero mergers in the Plummer potential—
now have ( )f 12 Gyrm of at least a few ×10−5 and often as
large as ∼10−3, depending on c and the binary type. Moreover,
increasing c in these potentials increases fm, which is the
opposite trend to the Plummer case. As a result, mass
segregation in cusped clusters would tend to additionally
increase fm at late times.
Both effects are due to the ubiquity of the Γ>1/5 regime

(promoting high e excitation) in the Hernquist potential, even
near the cluster center (Figure 1)—unlike in the Plummer case,
there is little disadvantage to binaries being centrally concen-
trated. Moreover, secular evolution is fast near the center of the
Hernquist sphere ( µ -t Asec

1 and the “tidal strength” A diverges,
see Figure 1), and short-timescale fluctuations there are strong.
As a result, increasing c drives more binaries to merge within a
Hubble time. Many binaries that orbit near the centers of cuspy
clusters have <t 10 yrsec

6 —hence, several curves show non-
zero ( )f 10 yrm

6 .
Also, fm shows a weaker dependence on cluster mass M than

in the Plummer case. This is because of the large A values in
the Hernquist case (see Figure 1(b)), which act to suppress the
effect of GR precession: Equation (4) then yields  0GR , a
limit in which emax is independent of M (Paper II).

4. Merger Rates

Our results on merger fractions fm(t) allow us to calculate the
specific merger rate , which is the rate of compact object
binary mergers of a given flavor per unit volume in the local
universe, given the birth history of binaries of that type. The
latter is described by the formation rate of such binaries per unit
cluster mass W(t), such that in the interval (t, t+δt), W(t)δt
systems are produced per unit cluster mass. The cumulative
number of mergers from that binary type per unit cluster mass
after time t is then

( ) ( ) ( ) ( )òº ¢ ¢ - ¢ t dt W t f t t , 11
t

0
m

and the corresponding contribution to the specific merger rate
at time t is ( )r= d t dtcl , where ρcl is the cluster mass
density in the local universe.
We consider two simple histories of compact object binary

formation. The first takes the form of a burst, so that at t=0
each cluster instantaneously forms a population of binaries. If
Xborn compact object binaries are born per unit cluster mass,
then ( ) ( )d=W t X tborn so that ( ) ( )= t X f tborn m and

( )
( )

( )r= t X
df t

dt
. 12born cl

m

The second model assumes a constant compact object binary
formation rate W(t)=Yform per unit cluster mass. Then
the cumulative merger number from that cluster is ( ) = t

( ) ( )ò ò¢ - ¢ =Y dt f t t Y dx f x
t t

form 0 m form 0 m , resulting in the spe-
cific merger rate

( ) ( ) ( )r= t Y f t . 13form cl m

The results obtained for these two binary formation histories
give an idea of the outcomes of more sophisticated models.

6 The κ values are calculated by putting a0=amin, Tm=12 Gyr, and
- ~e i1 cosmax

2 2
0 in Equation (9) and solving for icos 0 (the approximation

- ~e i1 cosmax
2 2

0 is a reasonable one whenever Γ>1/5).
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4.1. Merger Rates from Globular Clusters

Globular clusters have cored profiles, so we use fm results for
Plummer spheres (Section 3.3.1) to represent them. Since
globular clusters have a range of masses and fm is a function of
M, appropriate averaging of the rates (12)–(13) over the cluster
mass spectrum is needed. Following Rodriguez et al. (2015) we
use a log-normal mass function for the number density of
globular clusters (Harris et al. 2014):

⎡
⎣⎢

⎤
⎦⎥

( )

( ( ) ) ( )





ps

m
s

=

´ -
-

dn

d M M

n

M M

lg 2

exp
lg

2
, 14

M

M

gc gc
tot

2

2

where ngc
tot is the total number density of globular clusters in the

local universe integrated over M, and σM=0.52, μ=5.54.
The number density ngc

tot is an uncertain quantity (Portegies
Zwart & McMillan 2000; Rodriguez et al. 2015, 2016). In this
work, guided by existing estimates, we adopt = -n 3 Mpcgc

tot 3.
For simplicity, we do the averaging in an approximate fashion

by splitting the cluster population into three mass bins
< <M M Mi i

min max , i=1, 2, 3, where = ´ +M M5 10i
imin 3

and = ´ +M M5 10i
imax 4 . The mass density in clusters in each

mass bin is then r igc, =ò Mdn
M

M
gc

i

i
min

max

= ( ) ´3.9, 14.1, 3.3

( ) 
-n M10 3 Mpc5

gc
tot 3 Mpc−3. We assign to each bin the value

of fm computed for Plummer models with = = +M M M10i
i4

(within the ith bin). Then averaging of the merger rate over the
distribution of M amounts to replacing r fcl m with

( ) ( ) ( )å r=
=

F t f t M; . 15
i

i im
1

3

gc, m

We now compute the present day rate  for the two
aforementioned binary birth histories.

4.1.1. Merger Rates from Globular Clusters: A Single Burst of
Compact Object Binary Formation

Globular clusters experience a large starburst at their
formation. Compact objects get produced in supernova
explosions shortly thereafter. If they remain bound and

assemble into binaries on a timescale short compared to the
Hubble time, then the single burst approximation (12) should
characterize the current merger rate  reasonably well.
Motivated by the calculations of Löckmann et al. (2010), in

this work we adopt = - -X M10born
3 1 for the specific birth rate

of all compact binary species, similar to the value obtained in
Rodriguez et al. (2016). We calculate the total merger rate
using Equation (12), averaging it over cluster mass via
Equation (15):

∣
( )

 

= = ´

´

- - -

- - - -

 X
dF

dt
X

M

dF dt

M

3 10 Gpc yr

10 3 Mpc Gyr
, 16

born
m 3 3 1

born
3 1

m 12 Gyr

3 1

where in the numerical estimate we assumed that the formation
burst happened 12 Gyr ago, and took a value of dF dtm

characteristic of Plummer models (Section 3.3.1).

4.1.2. Merger Rates from Globular Clusters: A Constant Rate of
Compact Object Binary Formation

An alternative birth history is the one in which the assembly of
compact objects into binaries in globular clusters occurred at a
steady (slow) rate Yform over the last 12 Gyr. Here we adopt

= - - -Y M10 Gyrform
4 1 1 so that upon integration over a Hubble

time we reproduce roughly the specific compact binary occurrence
rate Xborn assumed in Section 4.1.1 (i.e., Yform×10Gyr=Xborn).
Then from Equation (13) the merger rate is

( ) ( )
 

= =

´
´

- -

- - - -

 Y F
Y

M

F

M

0.3 Gpc yr

10 Gyr

12 Gyr

3 10 Mpc
, 17

form m
3 1

form
4 1 1

m
3 3

and again we took Fm(12 Gyr) values characteristic of Plummer
models (Section 3.3.1).

4.2. Merger Rates from Nuclear Clusters

In the case of nuclear clusters we expect compact object
binaries to be created at a relatively steady rate due to
continuous star formation over long times (Figer et al. 2004;
dynamical assembly due to three-body processes is not as

Figure 3.Merger rates of compact object binaries driven by the tidal fields of (spherical) globular and nuclear clusters. For each binary type we consider two values
of the central concentration c. For globular clusters, modeled as cored (Plummer) systems, we look at two binary birth histories: single burst (blue) and constant
formation rate (red). For nuclear clusters we calculate rates assuming either cored (Plummer, yellow) or cusped (Hernquist, green) profiles, considering only the
constant binary formation history. Gray regions show the LIGO rate estimates. See the text for details.
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important here, although see Muno et al. 2005). Thus, the
constant formation rate assumption is more appropriate for
nuclear clusters, and we again assume = - - -Y M10 Gyrform

4 1 1

for these systems.
For simplicity, we take all nuclear clusters to have mass

=M M10nc
7 and assume = -n 0.02 Mpcnc

3 for their number
density (Petrovich & Antonini 2017; Hamers et al. 2018). Then

( )r =f M n f Mcl m nc nc m nc and the merger rate becomes
(Equation (13))

( )

( )
( )



=

=

´

- -
- - -

- -

 Y M n f M

Y

M

n f M

0.2 Gpc yr
10 Gyr

0.02 Mpc

12 Gyr;

10
, 18

form nc nc m nc

3 1 form
4 1 1

nc
3

m nc

2

where for ( )f M12 Gyr;m nc we adopted a value characteristic of
cusped (Hernquist) models—see Section 3.3.2. Cored nuclear
clusters have fm(12 Gyr; Mnc) an order of magnitude lower, see
Section 3.3.1.

5. Discussion

In Figure 3 we show present day compact binary merger rates
due to cluster tides in globular and nuclear clusters. Rates for
globular clusters use the results we obtained for Plummer models
(for two birth histories, Sections 4.1.1–4.1.2), while for nuclear
clusters we consider both Hernquist and Plummer models and a
flat binary formation history (Section 4.2). For NS–NS binaries
we consider only moderate concentrations c=1, 10, while for
(significantly heavier) NS–BH and BH–BH binaries we assumed
a higher degree of central segregation, c=10, 100. The gray
regions in Figure 3 show the LIGO rate estimates (The LIGO
Scientific Collaboration et al. 2018): 110–3840Gpc−3 yr−1 and
9.7–101 Gpc−3 yr−1 for NS–NS and BH–BH mergers in the
local universe, respectively, while the upper limit on the NS–BH
merger rate is 610 Gpc−3 yr−1.

Focusing first on globular clusters, one can see that their
merger rates fall short of providing a substantial contribution to
the observed rates. We find –~ - - 0.01 0.07 Gpc yr3 1 for
NS–NS binaries and 0.02 Gpc−3 yr−1 for both NS–BH and
BH–BH binaries in globular clusters (Figure 3). The primary
reason for fewer NS–BH and BH–BH mergers compared to
NS–NS mergers is that the heavier binaries (i) suffer from
stronger GR precession, which cannot be overcome in a cored
potential even at the cluster center, and (ii) have higher central
concentrations, which brings them in to the Γ<1/5 regime,
where high eccentricity excitation is suppressed (higher c
always leads to lower  in globular clusters). Also, a constant
binary formation rate results in higher  because many
binaries merge soon after their birth: fm(t) curves rise
substantially faster during the first 107–108 yr, see Figure 2.

As for nuclear star clusters, if we assume a cusped density
profile (Hernquist model), then –~ - - 0.1 0.2 Gpc yr3 1 for
NS–NS, NS–BH, and BH–BH binaries. The NS–BH and BH–
BH binaries merge slightly more often than NS–NS binaries
because near the center of cusped clusters the G < 1 5 regime
is rare, and the tidal field is strong, which helps to overcome
GR precession. As a consequence, higher central concentration
is advantageous (although not dramatically). However, in cored
nuclear clusters the situation is more similar to that in globular
clusters and  drops appreciably with increasing c.

Overall, we see that NS–BH and BH–BH merger rates are
very similar, assuming they are formed in equal numbers.
Cusped nuclear clusters dominate the cluster tide-driven merger
rate compared to globular clusters for all binary species.
Whereas cluster tides acting alone are unlikely to produce
many NS–NS mergers, they can still contribute at the level of
several percent to the observed NS–BH and BH–BH merger
rates, given our assumptions.

5.1. Comparison with Existing Studies

There are a number of existing estimates of compact object
binary merger rates in globular and nuclear clusters (Antonini et al.
2014, 2016; Stephan et al. 2016; Fragione & Bromberg 2019).
The studies that bear closest resemblance to our work consider
binaries orbiting SMBHs at the centers of spherical nuclear clusters
and undergoing LK-driven evolution (Antonini & Perets 2012;
Prodan et al. 2015; Hoang et al. 2018). Petrovich & Antonini
(2017) explored a similar setup (binary orbiting a SMBH) but also
included the effect of a nonspherical cluster potential on the
orientation of the binary’s outer orbit. As a result of nodal
precession of the outer orbit, the inclination of the inner binary
(with respect to its outer orbit) was able to reach high values,
triggering LK oscillations and greatly enhancing merger rates.
However, none of these studies accounted for the direct tidal

torque on the inner orbit due to the cluster potential as we do
here. Additionally, in these studies the distribution of binary
outer orbits is typically truncated at radii of 0.1 pc from the
cluster center. We do not rely on the presence of a central BH
and still find mergers (out to much larger radii) by including a
cluster potential.
In nuclear clusters our BH–BH merger rate ~
– - -0.1 0.2 Gpc yr3 1 is comparable to (but typically slightly

smaller than) those of others, e.g., Antonini & Rasio (2016;
~ - - 1 Gpc yr3 1 from nuclear clusters without an SMBH),

Petrovich & Antonini (2017; –~ - - 0.6 15 Gpc yr3 1 from
nonspherical nuclear clusters with an SMBH, but they use
higher Yform). In globular clusters our BH–BH rate  

- -0.02 Gpc yr3 1 is significantly smaller than those of, e.g.,
Rodriguez et al. (2016; –~ - - 2 20 Gpc yr3 1 from hardening
of dynamically formed binaries), see Section 4.1.2.
For NS–BH and NS–NS binaries in (cusped) nuclear clusters

our rates, –~ - - 0.1 0.2 Gpc yr3 1, are comparable to or
greater than those of Petrovich & Antonini (2017; ~

– - -0.02 0.4 Gpc yr3 1 and - -  0.02 Gpc yr3 1 respectively).
Our results are also comparable to those of Hamers et al. (2018)
who found a combined merger rate for all compact object
binary flavors in nuclear clusters with SMBHs of ~

– - -0.02 0.4 Gpc yr3 1.
Like most other dynamical merger channels, the rates

produced by our mechanism fall short of those observed by
LIGO by at least one order of magnitude.

5.2. Further Refinements

Apart from some technical simplifications used in this study
(e.g., our approximation of Tm using Equation (9), simple
analytical estimate for δe, etc.), we have also deliberately
omitted certain physical ingredients to focus on mergers arising
due to secular effects alone.
Perhaps most crucially, we ignored the impact of flyby

encounters on the binary’s inner orbital elements (Heggie &
Rasio 1996; Hamers 2018). This is an important effect that can
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influence our results in nontrivial ways. Recently, Samsing
et al. (2019) found that numerous distant flybys can system-
atically increase the number of binary mergers in stellar clusters
(although they did not account for secular tide-driven
evolution). Heisler & Tremaine (1986), in their study of Oort
comet dynamics, found that stellar flybys contribute a
significant portion of the torque at high eccentricity—in fact,
the Oort comets exhibit a coupled behavior in which their
orbital elements roughly follow a smooth, secular (Galactic
tide-driven) trajectory on average, while simultaneously
exhibiting a random walk in phase-space because of stochastic
flyby encounters. We expect a similar behavior to hold in our
case, and will explore it in future work.

We also neglected time-dependence of the cluster properties,
e.g., due to core collapse or disk shocking, and ignored the
relaxation of the binary’s outer orbit, e.g., due to vector
resonant relaxation (VanLandingham et al. 2016; Hamers et al.
2018) or dynamical friction. In particular, mass segregation of
heavy binaries would boost the central concentration c, which
can increase or decrease merger fractions depending on the
cluster potential and the level of concentration (Section 3).
However, we note that our merger rates are often only mildly
affected by variation of c (Figure 3).

To focus on the tidal effect of the smooth cluster mass
distribution alone, in this work we ignored the possibility of a
central SMBH, which could reside in nuclear clusters.
Similarly, we assumed each cluster to be perfectly spherically
symmetric, omitting the effects of possible oblateness on the
outer orbit (Petrovich & Antonini 2017).

Our future work will address many of these issues. In
C. Hamilton & R. R. Rafikov (2019, in preparation) we will
explore the sensitivity of our results to variation of the
underlying assumptions, and study the impact of the presence
of a central SMBH on the merger rates in nuclear clusters.

5.3. Summary

We explored a new channel for producing compact object
mergers in dense stellar clusters that relies on the secular
evolution of binaries driven by the cluster’s tidal gravitational
field (a field that is unavoidably present in any merger model
involving clusters). We computed merger rates due to this
mechanism by focusing on conditions in which the binary can
be driven to such high eccentricity that GW emission becomes
important, while fully accounting for the detrimental effect of
GR precession. We showed that stellar systems with cored
potentials (e.g., globular clusters) do not produce many
mergers, owing to the inefficiency of high-eccentricity
excitation in the cluster cores. Cusped nuclear clusters (even
in the absence of a central SMBH) are significantly more
effective and lead to observationally interesting merger rates.
Our merger rates come closest to meeting current LIGO
estimates for BH–BH binaries but still fall short by more than
an order of magnitude. On the other hand, we note that all
current rate estimates—including ours—have (systematic) error
bars of at least an order of magnitude. Our future work will
refine these calculations in many ways.

C.H. is funded by a Science and Technology Facilities
Council (STFC) studentship.
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