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Abstract

Aims/ Objectives: Multiple mean break detection problem in time series is considered. A
segmentation based on detecting turning points is applied to the original time series and its
scaling coefficients series resulting from the maximal overlapped discrete wavelet transform
(MODWT). Using a segmentation level along with a minimal distance parameter between two
successive turning points we select a small number of segments within each series. A change point
statistical test is then run separately within each series and over each segment. The simulation
experiment shows that the multiple mean break detection procedure offers very good practical
performance. The test procedure is applied to a real set of data.
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1 Introduction

Change point detection is a fundamental problem in the analysis of nonstationary time series. There
is an extensive literature in identifying single break in the mean and other parameters such as the
variance. Detection of several change-points are of interest in a wide range of applications such as
stock prices and climatic data. In this paper we consider the problem of detecting simultaniously
several mean breaks of a discrete time series by segmenting the series using the maximal overlapped
discrete wavelet transform (MODWT) [1]-[3], and applying a segmentation procedure to both the
original series and to the smoothed resulting scaling coefficients from the transform. Our approach
is nonparametric and is quite different from the other related work such as the Baysian approach in
[4] which suggest a recurcive algorithm to identify change-points using segmentation and assuming
independence between segments, and [5] which follows the same Bayesian approach and make use of
the advanced Monte Algorithm (SAMC). A nonparametric approach that was explored within the
framework of least squares regression trees is given by [6]. We can mention as well the wild binary
segmentation (WBS) proposed by [7] where the basic model is a deterministic piecewise-constant
signal with multiple breaks plus a white noise. The method is efficient but make use of many
technical assumptions. A good review and discussion of multiple breaks detection methods can be
found in [8] which is an online repository of publications and sofware dedicated to break detections
in data.

We assume that the break locations k∗
i and their numbers is unknown, but they are assumed to be

relatively away from each other so that the sample size of any retained segment allows us to run
a change-point statistical test designed for a single mean break detection. Several segmentation
methods are available in the litterature, and in this work we explore the segmentation proposed
in [9] which does not rely on any probabilistic assumption. The approach for obtaining such
automatic segmentation is based on locating turning points which are defined first by identifying
local maximum and minimum. In general these turning points indicate a change in the direction
of local trends of the series. We emphasize here only the situation where a change in trends is
occuring over different time periods. The basic idea of this procedure is to split the series into
different periods such that each extracted segment is associated to a single trend. In order to gain
the full benefit of such segmentation, we first apply it to the original series and then to their scaling
coefficients up to some level J of the MODWT transform. The advantage of the MODWT transform
is twofold, first we do not loose the existing different local trends in the original series and secondly
the data is smoothed up to some level so that we nearly avoid the burden of how to choose the
segmentation level. In our simulation we show that a good practical choice of the segmentation
level is to start with a higher level for the serie Xt and then lower that level as we move from lower
to higher scales for the scaling coefficient of the MODWT.

Its important to note here that this procedure does not require to run the wavelet transform to a
higher level, the segmentation works better for lower scale of the MODWT transform as can be
seen in Fig. 2.

The proposed procedure begin first by segmenting the series Xt and its scaling coefficients by
identifying separately the existing turning points and counting their numbers within each series.
Then based on these points, as described in the algorithm in section 3 a new segmentation is derived
where each turning point is within or in the middle of these new segments. The corresponding time
interval of these new segments obtained from each series are then used to segment both the series
and its scaling coefficients. Each turning point within each series is then subject to a statistical test
and checked whether its a true change in the mean.

The outline of this paper is as follows. Section 2 provides a brief review of the MODWT tranform
in the literature. The scaling coefficients for a series with multiple mean breaks are depicted in this
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section. Section 3 introduces how turning points are selected along with a segmentation algorithm.
In section 4 we give a summary of one of the mean statistical test used in a single change point
detection problem. Section 5 presents some Monte Carlo experiments. In section 6 we apply the
test procedure to a real data, a Well-Log series. Section 7 provides a some conclusions.

Let X = (X1, · · · ,XN ) be an observed time serie for which we want to test for several breaks in
the mean. Assume that X is regarded under H0 as a realization of discrete time stochastic process
with constant mean, and constant variance.

The null hypothesis of our test problem would be

H0 : E(Xt) = µ t = 1, · · · , N (1.1)

which we whish to test against the alternative hypothesis

H1 : E(Xt) = µi for ki−1 ≤ t < ki, i = 1, ..,K << N (1.2)

where k0 = 1 and the times t = ki of mean change are unknown.

2 The MODWT Transform

The maximal-overlap discrete wavelet transform (MODWT) also called the undecimated or shift
invariant discret wavelet transform has been discussed in the wavelet literature see [1]-[3]. For
the class of discrete compactly supported Daubechies wavelets, we denote {h̃j,l and g̃j,l, l =
0, · · · , Lj − 1} the level j of a wavelet and scaling filters of length Lj = (2j − 1)(L− 1) + 1. These
filters are discussed and given in more details in [2]. The stochastic processes resulting from applying
these filters to {Xt} are respectively given by the level j wavelet and scaling coefficients

Vj,t =

Lj−1∑
l=0

g̃j,lXt−l j = 1, 2 · · · J (2.1)

The MODWT wavelet and scaling coefficient based on a finite sample size are given by

and Ṽj,t =

Lj−1∑
l=0

g̃j,lXt−l mod N , t = 0, 1, · · ·N − 1 (2.2)

obtained as a result of circularly filtering X0, X1, · · · , XN−1 with the filters {h̃j,l} and {g̃j,l}. Where
Xt mod N = Xt if t ≥ 0 and Xt mod N = YN−|t| if t < 0. Note that Ṽj,t = Vj,t for t ≥ Lj − 1 and
j = 1, · · · , J where J is the maximum level up to which we run the MODWT.

Its important to note that in general the wavelet coefficients remove trends and demean the process
Xt as shown in [10], whereas the scaling coefficients Ṽj,t preserve the overall shape of Xt and keep
track of all important data points, and particularly the turning points that detect direction change
in the local trends. These changes should be regarded as a change in the mean of the original series
Xt as shown Fig. 1.
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Fig. 1. (a)Gaussian Gt serie with multiple breaks at k1 = 100, k2 = 200 and k3 = 300.
(b)-(e) are the scaling coefficients Ṽj,t respective for level j = 1, 2, 3, 4. The R wavelet

package was used to compute the MODWT with time aligned

3 Segmentation Procedure

Turning points are defined as local minimum or maximum points in a time series, they are identified
as the start and end of a local trend. They are used to segment the series into different periods
such that each extracted segment is expected to cover a single trend over that period. In this
work we explore the segmentation procedure described by the Algorithm 2 in [9]. The proposed
method generates segments at different levels of details up to a specified segmentation level SL,
and does not depend on any threshold. A set of turning points is selected at a specified level of the
segmentation. This segmentation level aim to reduce the number of tuning points by combining
small trends into large ones. The series Xt and the scaling coefficients Ṽj,t j = 1, · · · , J are then
segmented separately according to the previous method. It should be noted here that because the
scaling coefficients are smoother than Xt, different lower segmentation level are used for each Ṽj,t.
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A small number of turning points are then identified within each series. These are regarded as
possible change points to be tested. To this end we use these set of identified turning points to split
separately the series Xt and Ṽj,t j = 1, · · · , J into new set of segments such that for each series
each point of the selected set of turning point belongs to at least one of these segments. Obviously
for a given series this procedure allows for a situation where one turning point might belong to
more than one segment. This might occurs particularly if some of these identified points are too
close, and in this case in order to maintain the assumption that two successive breaks are away
from each other, we need to set a minimal distance between two successive turning points. For that
purpose we introduce a parameter λd that specifies the minimal distance we should have between
two successive turning points. This help to further reduce the number of these points. A practical
choice of λd would depend on the segment size Ns. Our simulations show that for the particular
case Ns = 100, we should set it so that λd ≥ 6. As a general rule, based on simulation experements
and the example of real data, we recommend any value around 10% of the segment size Ns. Note
that setting λd does not guarantee any two segment to be disjoints. When a turning point is within
two different segments that are not disjoints, then it will be subject twice to the same statistical test
but with different data. This should only strengthen the chance of good detection. As illustrated
in the example of simulated models with three mean breaks, the number of turning points was in
general less than 20 for a sample size of N = 400, and the correct detection of the true breaks were
very high for the Gaussian model Gt and its square G2

t as shown in the table 1. The next algorithm
describes the main steps of the new segmentation to split the series Xt and the scaling coefficients
Ṽj,t.
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Fig. 2. (a) Gaussian serie Gt with multiple mean breaks. (b)-(d) are the scaling
coefficients Ṽj,t respective for level j = 1, 2, 3. The segmentation of each series is

plotted in dashed lines. The vertical lines are the detected breaks after running the
statistical test over the set of segments within each series
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3.1 Algorithm

Let {Xt, t = 1, · · · , N} be an observed time series and {pk, k = 1, · · · ,K} be the set of turning
points locations ordered in times retained from its segmentation with K > 2 and a segmentation
level SL according to the procedure in Algorithm 2 of [9]. Denote by Ns the minimum segment
size to be used so that the power of the statistical test is not affected. An arbitrary choice of the
minimum distance parameter λd is chosen accordingly, and if two successive turning points are too
close we discard the smallest in magnitude. Then given the random location of these turning points,
one way to split up Xt into segments Yk is as follow

Algorithm

(1) for k = 1
if(p1 ≥ Ns/2)

Y1 = X[1 : (p1 +Ns/2)]
else Y1 = X[1 : (p1 +Ns]

(2) set k = 2
while (k ≤ K)

if (pk ≥ pk−1 +Ns/2) and (pk < N −Ns/2)
Yk = X[(pk−1 + 1) : (pk +Ns/2)]

else Yk = NULL
k = k + 1.

Note that when a turning point is near the end of the series, and if we cannot form a segment of
size at leat Ns, then we set Yk = NULL and consider the previous segment as the last one. This
shows that in order to increase the chance of getting a segment for the end of the series we should
choose smaller Ns.
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Fig. 3. Estimate of the break locations k∗
i which correspond to the highest value of

the test statistic. (a) Gaussian serie Gt, (b)-(d) scaling coefficients Ṽj,t of Gt

respective for level j = 1, 2, 3
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The same segmentation procedure is applied also to the scaling coefficients Ṽj,t for j = 1, · · · , J
where Xt is replaced with Ṽj,t. For a fixed series, based on the locations of the set of selected
turning points a new segmentation is derived by the previous Algorithm such that each turning
point is within a segment of size at least equal Ns.
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Fig. 4. Estimate of the break locations k∗
i for the square of the Gaussian serie and its

scaling coefficients as in Fig. 3.

4 Change Point Statistic

The constructed segments Yk, k = 1, · · · ,K are assumed to contain all mean break points and
are then subject to a statistical test. Due to the random fluctuations in the data that affect both
segmentations, the number of retained segments Yk according to the previous algorithm should be
higher than the true number of breaking points. This only increases the probability of covering
all the mean break points by these segments. Note that each turning point within a segments Yk

is subject to a statistical test to check whether its in fact a true change point. There are many
statistical tests available in the literature that can be applied for this purpose. We choose to apply
a nonparametric test proposed by [11] and [12]. The basic idea of this test suggests to bypass
the estimation problem of the long run variance as discussed in [13] and [14] by applying a self
normalizer to the test statistic. Two types of self normalisation were introduced in this context, the
first is based on the proposed test statistic in [11] and the second type is proposed in [12]. We make
use of the second type, and in our setting, we define the partial sums computed from the scaling
coefficients Ṽj,t for j = 1, · · · , J .

Sj(t1, t2) =

t2∑
t=t1

Ṽj,t, if Lj − 1 ≤ t1 < t2 and 0 otherwise
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Then the normalization process is defined for k = Lj − 1, Lj , · · · , N − 1 by

Rj(k) =
1

N2
j

 k∑
t=Lj−1

(Sj(1, t)−
t

k
Sj(1, k))

2 +

N−1∑
t=k+1

(Sj(t,N)− N − t+ 1

N − k
Sj(k + 1, N))2

 (4.1)

The statistic is then given by

QVj = max
Lj−1≤k≤N−1

T 2
j (k)

Rj(k)
(4.2)

where Tj(k) =
1√
Nj

∑k
t=Lj−1(V̂j,t − Vj) k = Lj − 1, · · · , N

A similar statistic QX based on Xt is computed where Ṽj,t is replaced with Xt.

The asymptotic distribution of QVj or QX is not standard, its critical values are computed by means

of simulations, and are tabulated in [12]. Based on the scaling coefficients Ṽj,ti , the test statistic
QVj is computed seperatly over each segment Yk and compared to its critical values. For instance,
for α = 5%, then the simulated 95% quantile value is 40.1.

100 150 200 250 300

0
10

30
50

t

(a)

100 150 200 250 300

0
10

20
30

40
50

60

(b) j = 1

t

100 150 200 250 300

0
10

30
50

(c) j = 2

t 100 150 200 250 300

0
10

30
50

(d) j = 3

t

Fig. 5. Estimate of the break locations k∗
i for the AR(1) serie and its scaling

coefficients as in Fig. 3

Any turning point that is selected by this statistical test as a breaking point is retained. If the
same point is selected more than one time because its belong to two different non disjoint segments,
and if the estimated locations in time are different, then we can adopt a rule to choose the point
location that correspond to the highest value of test statistic QX or QVj .

5 Simulations

To illustrate the proposed procedure, we considere three different simulated models each with sample
size N = 400 given in the example below. We set µ1 = 0, µ2 = 3, µ3 = 1.5 and µ4 = 3.5 so that each
series start with µ1 = 0, and then we have three breaks in the mean at times k1 = 100, k2 = 200
and k3 = 300. The process {ϵt} is a Gaussian uncorrelated sequence with mean zero and variance
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1. The Least Asymetric wavelet filter LA(8) of length L = 8 was used to run the transform up
to level J = 3. The choice of the wavelet filter was arbitrary with moderate length. In order to
get the set of turning points we apply the segmentation procedure in [9] with segmentation level
SL = 4, 3, 2 and 1 respectively for Xt and Ṽj,t, j = 1, 2, 3, then by using the proposed algorithm in
section 3 with Ns = 100 and λd = 10 we derive a new set of segments Yk for k = 1, · · ·K separately
for the original series Xt and Ṽj,t, j = 1, 2, 3. We then run the statistical test given in (4.2) over
each segment Yk. Based on the test result we decide whether there exits a change point in a given
segment. Any break detection is then retained and plotted as shown in Fig. 2 for the Gaussian
model.

This process of generating data sets, running the above procedure separately for each series and then
testing at significance level 1−α = 95% over each segment Yk was repeated a total of n = 100 times
for each sample size. The proportion of true break detection for these replications in summarized
in Table 1 for three models. For illustration, the results for a single replication for model (a) are
shown in Fig. 2.

5.1 Example

We consider two linear models Gt (Gaussian) and AR(1), and a nonlinear model G2
t each with three

breaks in the mean occuring respectively at times k1 = 100, k2 = 200 and k3 = 300.

(a) Gaussian model

Xt = µ1I(0≤t<100) + µ2I(100≤t<200) + µ3I(200≤t<300) + µ4I(300≤t≤400) + ϵt (5.1)

(b) Non-linear model

Xt = µ1I(0≤t<100) + µ2I(100≤t<200) + µ3I(200≤t<300) + µ4I(300≤t≤400) + ϵ2t (5.2)

(c) AR(1) model

Xt = 0.7Xt−1 + µ1I(0≤t<100) + µ2I(100≤t<200) + µ3I(200≤t<300) + µ4I(300≤t≤400) + ϵt (5.3)

6 Well Log Data

In order to illustrate the performance of the proposed procedure for real data, we consider the
example of well log time series data shown in Fig. 6. The data is available from the website:

http://mldata.org/repository/data/viewslug/well-log/ This well log data set is for detecting changes
in the rocks stratification, described in [15]. It consists of 4050 nuclear magnetic resonance
measurement taken from drill while drilling a well. A plot of the data shows that the series contains
large spikes, so we only consider the middle portion Xt with no outliers of size N = 1100 which
shows that there exist at least 7 breaks in the mean. Our concern is to put into practice the
performance of the above test procedure. The plots in figure 6 clearly shows detection of multiple
mean breaks as indicated by the vertical dashed lines. The segment size was set to Ns = 150, the
minimal distance λd = 20, and we applied different segmentation levels for each series. All the 7
visible breaks are successfully detected in all panels, and there are extra breaks detected in panel
(a) for Xt and in panel (d) for Ṽ3,t. The results for the scaling coefficients Ṽ1,t and Ṽ2,t in panels (b)
and (c) are much better than in (a) and (c). For each series, all the estimated break locations are
given in Fig. 7. We expect that the statistical test procedure might provide more than one closer
location estimate for each break as shown in Fig. 7 where each panel is an histogram that shows
how many times each single break is detected as a mean break. For instance the break that occurs
just after time t = 400 was detected 6 times in Xt, 4 times in Ṽ1,t, 6 times in Ṽ2,t and 8 times in
Ṽ3,t.
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Table 1. Proportion in percentage (%) of true mean break detection from n = 100

replications each with sample size N = 400. The true time location of breaks are k1,

k2 and k3

Model k1 = 100 k2 = 200 k3 = 300

Gt 100 93 100
V1,t 100 100 100
V2,t 100 100 100
V3,t 100 100 100

G2
t 100 97 96

V1,t 100 100 100
V2,t 100 100 100
V3,t 100 100 100

AR(1) 95 64 76
V1,t 94 60 74
V2,t 95 61 77
V3,t 98 68 81
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Fig. 6. The segmentation of the Well Log data in dashed line with segmentation level
4, 3, 2, 1 respectively for data (a) Xt , and Ṽj,t, j = 1, 2, 3 (b)-(d). The vertical dashed

lines are the detected breaks
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Fig. 7. Estimate of the break locations in (a) Xt, and Ṽj,t, j = 1, 2, 3 (b)-(d)

7 Conclusion

The problem of detecting multiple mean changes in time series seems to be a difficult issue to solve
particularly if we adopt the nonparametric approach without any assumption on the time series
model. The wavelet transform comes as a handy very useful mathematical tool that can provide a
smoother representation of the series Xt without loosing details in the shape of the existing local
trends. In fact as can be seen from Fig. 2, the scaling coefficients Ṽj,t offers to run the same
statistical test using differents data set for the same test problem. In order to search and locate the
mean breaks, a segmentation procedure is used to subdevise in an appropriete way the sample time
interval of each series so that each break belongs to at least one segment. Because we do not have
a prior information about the number of breaks, we could end up with a large number of turning
points if we rely on segmentation alone from the Algorithm in [9]. The minimum distance parameter
λd was introduced to overcome this problem and therefore reduces the number of turning points
which helps in getting a small number of segments. As illustrated in Table 1, the proportion of
true mean breaks detection is very high and around 100% for the gaussian model Gt and model G2

t ,
and the detection proportion by the scaling coefficients are in general higher than in the original
seies. This proportion get slighly lower for the AR(1) model, and particularly for the second break.
It should be noted as well that the power of the statistical test used here may be affected due to
the varying small sample size of a segment Yk. In general the overall performances of this test
procedure are good enough, and can be improved by allowing moderate sample size for Yk, which
is arbitrary chosen in our procedure. The approach used by the segmentation requires the setting
of the segmentation level SL and the minimal distance λd between successive turning points. These
are left to be set by the user according to the shape of the data at hand. The tracking of the
locals up trends and down trends when we move from lower to higher scales in the MODWT can
be improved by trying different values for the parameters SL and λd. It should be noted here as
well that the choice of the wavelet filter was also arbitrary and any other wavelet filter could well
be applied.
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