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Abstract

Line intensity mapping (LIM) is a promising observational method to probe large-scale fluctuations of line
emission from distant galaxies. Data from wide-field LIM observations allow us to study the large-scale structure
of the universe as well as galaxy populations and their evolution. A serious problem with LIM is contamination by
foreground/background sources and various noise contributions. We develop conditional generative adversarial
networks (cGANs) that extract designated signals and information from noisy maps. We train the cGANs using
30,000 mock observation maps with assuming a Gaussian noise matched to the expected noise level of NASA’s
SPHEREx mission. The trained cGANs successfully reconstruct Hα emission from galaxies at a target redshift
from observed, noisy intensity maps. Intensity peaks with heights greater than 3.5σnoise are located with 60%
precision. The one-point probability distribution and the power spectrum are accurately recovered even in the
noise-dominated regime. However, the overall reconstruction performance depends on the pixel size and on the
survey volume assumed for the training data. It is necessary to generate training mock data with a sufficiently large
volume in order to reconstruct the intensity power spectrum at large angular scales. The suitably trained cGANs
perform robustly against variations of the galaxy line emission model. Our deep-learning approach can be readily
applied to observational data with line confusion and with noise.

Unified Astronomy Thesaurus concepts: Observational cosmology (1146); Astronomical methods (1043); Large-
scale structure of the universe (902)

1. Introduction

The large-scale structure of the universe contains rich
information on galaxy formation and on the nature of dark
matter and dark energy. Line intensity mapping (LIM) is an
emerging observational technique that measures the fluctua-
tions of line emission from galaxies and intergalactic medium.
With typically low angular and spectral resolutions, LIM can
survey an extremely large volume. Future LIM observations are
aimed at detecting emission lines at various wavelengths: H I
21 cm line (e.g., SKA; Koopmans et al. 2015), FIR/
submillimeter lines such as [C II] and CO (e.g., TIME; Crites
et al. 2014), and ultraviolet/optical lines such as Lyα and Hα
(e.g., SPHEREx; Doré et al. 2014).

While LIM has the advantage of being able to detect all
contributions including emission from faint, dwarf galaxies,
there is a serious contamination problem, the so-called line
confusion. Because individual line sources are not resolved in
LIM observations, foreground/background contamination can-
not be easily removed. So far, only a few practical methods
have been proposed to extract designated signals. Statistics-
based approaches include cross-correlation analysis with
galaxies/emission sources from the same redshift (e.g., Visbal
& Loeb 2010), and one that utilizes the anisotropic power
spectrum shape (e.g., Cheng et al. 2016). Cheng et al. (2020)

devise a method based on sparsity modeling that successfully
reconstructs the positions and the line luminosity functions of
point sources from multifrequency data.
Earlier in Moriwaki et al. (2020), we have proposed a deep-

learning approach to solve the line confusion problem. We use
conditional generative adversarial networks (cGANs), which
are known to apply to a broad range of image-to-image
translation problems. Our cGANs learn the clustering features
of multiple emission sources and are trained to separate signals
from different redshifts. It is shown that deep learning offers a
promising analysis method of data from LIM observations.
However, in practice, various noise sources can cause a serious
problem. Faint emission-line signals from distant galaxies are
likely overwhelmed by noise even with the typical level of
next-generation observations.
In this Letter, we propose to use cGANs to effectively de-

noise line intensity maps. We show that suitably trained
cGANs successfully reconstruct the emission-line signals on a
map, and recovers basic statistics of the intensity distribution.
All such information extracted from noisy maps can be used for
studies on cosmology and galaxy population evolution.

2. Methods

We consider Hα emission from galaxies at z=1.3 and
observed at 1.5 μm. The Hα emission is one of the major target
lines of future satellite missions such as SPHEREx (Doré et al.
2014) and CDIM (Cooray et al. 2019). We develop cGANs that
extract Hα signals from noisy observational data. We first
describe how we generate mock intensity maps that are used for
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training and test. We then explain the basic architecture of our
cGANs. Further technical details can be found in Moriwaki
et al. (2020).

2.1. Training and Test Data

We prepare a large set of training and test data. We use a fast
halo population code PINOCCHIO (Monaco et al. 2013) that
populates a cosmological volume with dark matter halos in a
consistent manner with the underlying linear density field. We
generate 300 (1000) independent halo catalogs with a cubic
box of 280h−1 Mpc on a side for training (test).6 The smallest
halo mass is 3×1010Me. We then assign Hα luminosities to
the individual halos to obtain a three-dimensional emissivity
field. The halo mass-to-luminosity relation is derived using the
result of a hydrodynamics simulation Illustris-TNG (Nelson
et al. 2019). We assume that the line luminosity is given by a
function of the star formation rate of the simulated galaxy as

= -L C M10 , 1A
line

2.5
lineline

* ( )

where we adopt Aline=1.0 mag, and Cline is a coefficient table
computed using the photoionization simulation code Cloudy
(Ferland et al. 2017).

We work with two-dimensional images (intensity maps) in
order to make the best use of modern image translation
methods, although, in principle, it is possible to construct
neural networks that read and generate three-dimensional data
(e.g., Zhang et al. 2019). We generate two-dimensional Hα
intensity maps by projecting the three-dimensional emissivity
fields along one direction.

For each realization of the training (test) data, 100 maps (1
map) with an area of 0.85 deg 2( ) are generated by projecting
random portions of an emissivity field. A total of 30,000
training data and 1000 test data are generated in this manner.
The intensity maps are pixelized with the angular and spectral
resolution of SPHEREx listed in Table 1.

Finally, realistic mock observation maps are generated by
adding Gaussian noise to the Hα intensity map. We adopt the
noise level of “SPHEREx deep” whose 5 σn sensitivity per
pixel at λ=1.5 μm is 22 mag, corresponding to
σn=2.6×10−6 erg s−1 cm−2 sr−1. The maps are normalized
by 1.0×10−4 erg s−1 cm−2 sr−1 before input to the networks.

2.2. Network Architecture

We develop cGANs using the publicly available pix2pix
code (Isola et al. 2016). The cGANs consist of two adversarial
convolutional networks: a generator and a discriminator. The
generator, consisting of eight convolutional and eight decon-
volutional layers, outputs a map G (“reconstructed map”) from

an observed map x. The discriminator, consisting of four
convolutional layers, returns a value D for the input of (x,y) or
(x,G[x]) with y denoting the Hα map. The value D indicates
the probability that the input is not (x,G[x]) but (x, y). During
the training, the two networks are updated repeatedly in an
adversarial way; the generator is updated so that it deceives the
discriminator (i.e., D(G[x]) should get closer to 1), while the
discriminator is updated so that it gets better accuracy (i.e., D
(x,y) and D(x,G[x]) get closer to 1 and 0, respectively).
Specifically, the parameters in the generator (discriminator)

are updated to decrease (increase) the loss function

l= +  G D G, , 2cGAN L1( ) ( ) ( )

where

= + - G D D x y D x G x, log , log 1 , , 3cGAN( ) ( ) [ ( [ ])] ( )

å= -
N

y G x
1

. 4L1
pix

∣ ( )∣ ( )

Note that we include an additional term L1 that is known to
ensure better performance by imposing the condition that the
values of the corresponding pixels in the true and reconstructed
maps should be close (Isola et al. 2016). In each round of
training, the loss function is computed with a mini-batch. After
some experiments, we set λ=1000 and batch size 4. The
networks are trained for 8 epochs. We adopt these parameter
values throughout the present study.

3. Results

Figure 1 shows the reconstruction performance of our
cGANs. Our networks reduce the noise and successfully extract
the true Hα signals. It is remarkable that both the source
positions and the intensities are reproduced well, even though
the observed map is noise dominated. A simpler approach in
such a noise-dominated case would be to select only high
signal sources in an observed map. However, we find that, if
we select pixels with signals greater than 3.5σn from the
observed maps, only 20% of them are true sources (see also
Figure 2). With our networks, about 60% of the reconstructed
pixels with intensities greater than 3.5σn are real sources.
Hence, our method significantly outperforms the simple signal
selection based on the local intensity.

3.1. Probability Distribution Function

The probability distribution function (PDF) of line intensity
is an excellent statistic that can constrain galaxy populations
and their physical properties (e.g., Breysse et al. 2017). We test
whether our networks also recover the PDF accurately.
We first note that, in general, a single set of networks do not

reproduce pixel statistics of images/maps robustly. We thus
resort to training multiple networks and take the mean of the
statistics reconstructed by the ensemble of networks. This
technique, called “bagging,” is known to reduce generalization
errors (Goodfellow et al. 2016), and has been applied to, for
instance, de-noising weak lensing convergence maps (Shirasaki
et al. 2019). In practice, we average the PDFs reconstructed by
five networks that are trained with different data sets.
Figure 2 compares the PDFs of true and reconstructed maps.

The vertical dashed line indicates the 1σ noise level. Our
cGANs are able to reconstruct the PDF of the Hα intensity
above 1σ. Note also that the scatter of the averaged PDF lies

Table 1
Observational Parameters of SPHEREx Deep (Doré et al. 2014)

Field of view 200 deg2

Angular resolution l 6 2×6 2
Spectral resolutiona R 41.5
Sensitivitya σn [erg s

−1 cm−2 sr−1] 2.6×10−6

Note.
a Values at λ=1.5 μm.

6 In the rest of this Letter, we adopt a Λ cold dark matter (ΛCDM) cosmology
with Ωm=0.32, ΩΛ=0.68, and h=0.67 (Planck Collaboration et al. 2020).
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within the intrinsic scatter of the true Hα maps, i.e., within the
so-called cosmic variance. Apparently, the networks tend to
reconstruct the PDFs close to the average. This is simply
caused by the bagging procedure. We have checked and
confirmed that the variance of reconstructed PDFs by a single
network is as large as the intrinsic one.

3.2. Power Spectrum

We further examine the ability of our cGANs to reconstruct
the intensity power spectrum. To this end, we again adopt the
bagging of five networks that are trained with different data
sets. The red points with error bars and the shaded regions in
Figure 3 show the power spectra of the reconstructed and true
Hα maps, respectively. We also show the noise power
spectrum, Pn(k), and its variance, P k Nn k( ) , where Nk is the
number of modes in k−Δk/2<|k|�k+Δk/2. We
adopt D = D =k k klog 0.2.

We notice that the reconstructed power spectra on large
scales (k0.5) are systematically underestimated. This might

be owing to the finite box size of the training data. To examine
this, we train the cGANs with mock intensity maps with a
larger area. For this test, we generate halo catalogs in a cubic
volume of 700h−1 Mpc on a side (see Section 2.1). Then the
smallest halos populated is degraded to 3×1011Me, but we
have confirmed that the mean Hα intensity (or the total
luminosity density) is not significantly different from that with
our default box size of 280h−1 Mpc. We set the side length of
the pixel ¢ = ¢l 2.0 and the spectral resolution ¢ =R 41.5. Each
map has a 10 times larger area of (8.5°)2. The noise level scales
with the angular and spectral resolution as

s s¢ =
¢

¢l

l

R

R
, 5n n

2
⎜ ⎟⎛
⎝

⎞
⎠ ( )

where l, R, and σn are the original angular and spectral
resolution and the noise level of SPHEREx (Table 1). The
resulting noise level of the wide maps is

Figure 1. From left to right, we show the observed map (Hα + noise), the true Hα map, and the reconstructed Hα map. Each map has 0.85° on a side. The maps are
smoothed with a Gaussian beam with s = ¢0.6 for better visibility. The intensities are in units of 10−7 ergs−1cm−2sr−1. Note that the observed map is noise
dominated. See the color bars on the right.

Figure 2. The probability distribution function of Hα (red) and noise (black)
maps. The shaded regions and the error bars indicate 1σ variances of the true
and the reconstructed maps evaluated using 1000 test data. The PDF of a
reconstructed map is computed by taking an average of PDFs of five
reconstructed maps with five different networks.

Figure 3. The power spectra of Hα maps. We show the result of 0.85° map
(red) and 8.5° map (purple). The shaded regions and error bars correspond to
1σ variances of the true and reconstructed maps for 1000 test data. The
reconstructed power spectrum is computed by taking an average of those of
five reconstructed maps by five different networks. The gray (0.85°) and black
(8.5°) error bars show the noise power spectra Pn and their uncertain-
ties P Nn k .
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s¢ = ´ - - - -1.3 10 erg s cm srn
7 1 2 1. We adopt the same hyper-

parameters in the cGANs as in our default case except we set
λ=200 and the normalization factor
1.0×10−6 erg s−1 cm−2 sr−1 for the low-resolution maps.
The purple dots with error bars in Figure 3 show the power
spectrum of the reconstructed wide maps. The light-pink
shading indicates the 1σ dispersion of the true Hα power
spectra. Clearly, the large-scale (low-k) power spectrum is
reconstructed more accurately compared to our default case.
We note that the cGANs trained with the wider maps do not
resolve point sources, but the peaks and voids in the
reconstructed map correspond closely to the positions of
groups/clusters and void regions.

Ideally, networks trained with intensity maps that have fine
pixels and a large box size would be able to reconstruct both
the positions of point sources (galaxies) and their large-scale
clustering. Unfortunately, it becomes computationally more
expensive if we set a larger number of pixels. The computa-
tional time for training roughly scales with the number of
pixels, and the necessary number of training epochs could also
increase. We thus suggest that one should generate training
data depending on the purpose. In order to detect point sources
robustly, one needs to train the networks using fine-pixel maps.
If the primary purpose is to reconstruct the large-scale power
spectrum, for cosmology studies for instance, then one needs to

generate maps with a sufficiently large area (volume) but with
coarse pixels. The reconstructed power spectra shown in
Figure 3 suggest that one should adopt at least a several times
larger area for training than the actual size of observed maps.

3.3. Line Emission Models

The line intensities of high-redshift galaxies are not well
constrained observationally, and theoretical models of galaxy
formation and evolution remain uncertain. Thus it is important
to examine whether our GAN-based method can be applied
robustly to data that are generated with different line emission
models. To this end, we generate three additional sets of 1000
test data that have the same noise level but have different Hα
line intensities. Two of the new test data sets are generated by
simply multiplying the original Hα maps by a constant value,
cHα=0.5 and 2, as

= +a ax x xI c I I . 6obs H H noise( ) ( ) ( ) ( )

These cases serve as a test of the networks’ reconstruction
performance against the variation in the mean intensity. We
also adopt a completely different Hα model of emission, Silva
et al. (2018), in which the SFR–halo mass relation derived by
Guo et al. (2013) is used to assign the Hα luminosities (∝SFR).
The model reproduces the mean Hα intensity consistent with
observations (Sobral et al. 2013, 2015).

Figure 4. The leftmost panel is the one of the true Hα maps of original test data set. The second left and middle panel show the reconstructed Hα maps for test data in
which the Hα intensities are scaled with cHα=0.5, and 2.0, respectively. The color bars are scaled so that their corresponding “true” images look the same as the
leftmost image. The two panels on the right are the true and reconstructed maps when we adopt the Hα model of Silva et al. (2018). Each map has 0.85° on a side. All
the maps are smoothed with a Gaussian beam with s = ¢0.6 for better visibility. The intensities are in units of 10−7 ergs−1cm−2sr−1.

Figure 5. The average of the probability distribution function (left) and the power spectrum (right) of the true (dashed) and the reconstructed (solid) Hα maps over
1000 test data set. The reconstructed statistics are computed by taking means of those of five different networks. The cyan, red, purple, and yellow lines correspond to
the results with cHα=0.5,1, 2, and the Silva et al. (2018) model, respectively.
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Figure 4 shows examples of reconstructed images. In all the
cases, the locations and amplitudes of bright peaks are
reconstructed well, even though the mean intensity levels are
quite different from the original data (see the color bars). It
appears that the networks practically learn the noise properties
and extract the signal robustly, even if the signal amplitude is
different from the training data. It is remarkable that, in the
cases with cHα=2 and with Silva et al. (2018) model, the Hα
signals are reconstructed as accurately as the default cHα=1
case.
We also compare the one-point PDFs and the power spectra

in Figure 5, where we plot the averages over 1000 test data
with cHα=0.5 (cyan line), 1 (red), and 2 (purple), respec-
tively. The yellow lines show those with the Silva et al. (2018)
model. The statistics of each reconstructed image are computed
by taking the means of those reconstructed by five different
networks. Both the one-point PDFs and the power spectra are
reproduced well except the case of cHα=0.5 that has
effectively small signals. We thus conclude that our network
is applicable to maps with different intensity models as long as
we have a good understanding of the observational noise and if
the line intensities are not too weak compared to the
training data.

4. Conclusion

We have developed cGANs that effectively reduce observa-
tional noise in line intensity maps. We train the cGANs by
using a large set of mock observations assuming a realistic
noise level expected for the SPHEREx mission. Our cGANs
can reconstruct the point-source positions and the PDF of the
intensity maps. The power spectrum is also reconstructed
remarkably well, but the accuracy depends on the area/volume
assumed for the training data. We have also found that our
method is able to reconstruct the signals even if the underlying
line intensity model is different from the original training data.

If we combine with another set of networks that efficiently
separates signals from different redshifts (Moriwaki et al.
2020), the cGANs developed in this study can extract the
emission-line signal from galaxies at an arbitrarily specified
redshift from noisy maps. Therefore, using data from multi-
frequency, wide-field intensity mapping observations, we can
reconstruct the three-dimensional distribution of emission-line
galaxies. The intensity peaks detected by our cGANs
correspond to bright galaxies and galaxy groups with high
confidence, which will be promising targets for follow-up
observations. Finally, the reconstructed line intensity map
essentially traces the distribution of galaxies and hence of
underlying matter, and thus it is well suited for cross-

correlation analysis with other tracers. Accurate reconstruction
of the statistics such as the one-point PDF and power spectrum
as shown in this Letter will allow us to perform cosmological
parameter inference and to study galaxy formation and
evolution using data from future LIM observations.
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