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Abstract 
 

The study depicts that a prime near-ring N  is considered to be a commutative ring if there non-negative 

integers exist i.e.,  � ≥ 0, � ≥ 0  in such a way that N admits a non-zero derivation, where d satisfying 
one of the conditions like (��) − (��). For any �, � ∈ �,  we define the following properties 

(��) �([�, �]) − ��(���)�� = 0 ;   
(��) �([�, �]) + ��(���)�� = 0 ;  
 (��) �(���) − ��([�, �])�� = 0 ;   
(��) �(���) + ��([�, �])�� = 0  ; 
(��) �([�, �]) − ��(���)�� = 0 ;   
(��) �([�, �]) + ��(���)�� = 0; 
(��) �(���) − ��([�, �])�� = 0 ;  
(��) �(���) + ��([�, �])�� = 0. 

In addition, an example is given to demonstrate the primeness of the hypothesis which is not 
superfluous. Finally, we can conclude it with some open problems. 
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Original Research Article 



 
 
 

Khan and Madugu; JAMCS, 25(6): 1-9, 2017; Article no.JAMCS.38097 
 
 
 

2 
 
 

2010 mathematics subject classification: 16U80; 16Y30; 16W25. 
 

1 Introduction  
 
In all that follows a right near-ring � is a non-empty set with two operations  and  such that (�, +) is a 
group and (�,∙)  is a semi group satisfying the right distributive law (� + �) ∙ � = � ∙ � + � ∙ �  for all 
�, �, � ∈ �. A right near-ring � is zero symmetric if � ∙ 0 =  0 for all � ∈ �, (see Pilz [1] for details), recall 
that right distributivity yields 0 ∙ � =  0). Throughout the paper, we will use the word near-ring to mean 
zero symmetric right near-ring and denote ��  instead of � ∙ �.  According to Bell and Mason [2], a near-ring 
N is said to be prime if ��� = {0} for �, � ∈ � implies � = 0  or � = 0. An additive mapping �: � → �  is 
said to be a derivation if �(��) = ��(�) + �(�)� (or equivalently, as noted in Wang [3], that �(��) =
�(�)� + ��(�)  for all �, � ∈ �. The symbol �(�) will represent the multiplicative center of �,  that is, 
�(�) = {� ∈ �|�� = �� for all �� ∈ �}.  Note that �(�)  is a non-empty set, that is �(�) ≠ ∅ , since 
0 ∈ �(�). For any �, � ∈ �, the symbol [�, �] stands for the commutator �� − ��, while the symbol ��� 
will denote the anti commutator � � + ��.  There has been a great deal of work concerning commutativity of 
prime and semi prime rings with derivations satisfying certain differential identities stating that the existence 
of a suitably constrained on a prime near-ring forces the near-ring to be a commutative ring (see [4-10] for 
references). Many results asserting that prime near-ring with certain constrained derivations have ring like 
behavior. Several results in literature demonstrate that “how the structure of a ring is connected with the 
additive mapping defined on that ring.” Many authors [11,12,13] have studied the structure of prime and 
semi prime rings admitting suitably constrained additive mappings, as automorphisms, derivations, skew-
derivations and generalized derivations acting on appropriate subsets of the ring. Motivated by these 
observations, it is a natural to look for comparable results as near-ring. Our aim in this paper is to extend 
some results on prime near-ring with non-zero derivation satisfying some differential identities to become a 
commutative ring, and it is organized as follows. In Section 2, we present our main theorems, Section 3 
devotes a counterexample, Section 4 includes conclusion and finally, Section 5 provides some open 
problems. 
 

2 Main Results 
 
The main results of this paper are as given below. 
 
Theorem 2.1. Let � be a prime near-ring and there exist nonnegative integers � ≥ 0, � ≥ 0. If � admits a 
non-zero derivation d such that either (��)  �(�� − ��) − ��(�� + ��)�� = 0   or (��)  �(�� − ��) +
��(�� + ��)�� = 0  for any �, � ∈ �, then N is a commutative ring.  
 
Theorem 2.2. Let � be a prime near-ring and there exist nonnegative integers � ≥ 0, � ≥ 0. If � admits a 
non-zero derivation d such that either (��)  �(�� + ��) − ��(�� − ��)�� = 0   or (��)  �(�� + ��) +
��(�� − ��)�� = 0  for any �, � ∈ �, then N is a commutative ring.  
 
Theorem 2.3. Let � be a prime near-ring and there exist nonnegative integers � ≥ 0, � ≥ 0. If � admits a 
non-zero derivation d such that (��)  �(�� − ��) − ��(�� + ��)�� = 0 or (��)  �(�� − ��) +
��(�� + ��)�� = 0  for any �, � ∈ �, then N is a commutative ring.  
 
Theorem 2.4. Let � be a prime near-ring and there exist nonnegative integers � ≥ 0, � ≥ 0. If  � admits a 
non-zero derivation d such that (��)  �(�� + ��) − ��(�� − ��)�� = 0  or  (��)  �(�� + ��) +
��(�� − ��)�� = 0  for any �, � ∈ �, then N is a commutative ring.  
 
In order to prove our main results, we begin with the following known and elementary Facts.  
 
Fact 2.5 [14]. Taking a prime near-ring � that admits a non-zero derivation � with �(�)Ì  �(�). then  � is 
a commutative ring. 
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Fact 2.6. Let �  be and a prime near-ring. Then, for any �, � ∈ �: 
 

(i)  [x,  y x] = [x, y] x ;    (ii)  x o (yx) = (xo y) x  

(iii) [xy,  y] = [x, y] y   ;    (iv) (xy) o y = (xo y) y  

 
Proof of Theorem 2.1. By the hypotheses (��), we have 
 

 �([�, �]) = ��(�� + ��)��   ∀ �, � ∈ �.                                                                                   (2.1) 
 
Taking � by �� in (2.1) and using the Fact 2.6 (i) and (ii), we find that 
 

�([�, �]�) = ��(�� + ��))����   ∀ �, � ∈ �.                                                                               (2.2) 
 

In view of a non-zero derivation d, one can write  
 

   �([�, �]�) = �([�, �])� + [�, �] �(�).                                                                             (2.3)               
        
 Combining Equations (2.1) and (2.2) in (2.3), we obtain 
 

 ��(�� + ��)���� = ��(�� + ��)���� + [�, �]�(�). 
 
This implies that 
 

[�, �]�(�) = 0. 
 
But rest of the proof follows immediately from Theorem 2.2 (i) in [15].  
 
Next, from(��), we have 
 

�([�, �]) = −��(�� + ��)��,  �, � ∈ �.                                                                     (2.4) 
 
Replacing y by yx and using Fact 2.6 (i) and (ii), we have 
 

�([�, �]�) = −��(�� + ��)����.                                                                                        (2.5) 
 
By definition of non-zero derivation d, we have 
 

�([�, �]�) = �([�, �])� + [�, �] �(�)                                                                                          (2.6) 
 
Use the obtained results of (2.4) and (2.5) in (2.6) to get 
 

−��(�� − ��)���� =   −��(�� − ��)���� + [�, �]�(�). 
        
This gives  
 

[�, �]�(�) = 0    for all �, � ∈ �. 
 
Next, the remaining proof of this result is same as the proof of Theorem 2.2(ii) in [15].   
 
The following results are the corollaries of our Theorem 2.1. 
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Corollary 2.1.1 ([15, Theorem 2.2]).   Let � be a prime near-ring and there exist nonnegative integers 
� ≥ 0, � ≥ 0. If  � admits a non-zero derivation d such that either  �(�� − ��) − ��(�� − ��)�� = 0  or 
�(�� − ��) + ��(�� − ��)�� = 0  for any �, � ∈ �, then N is a commutative ring. 
 
Corollary 2.1.2. Let � be a prime near-ring and there exist nonnegative integers � ≥ 0. If  � admits a non-
zero derivation d such that either  �(�� − ��) ± (�� + ��)�� = 0 or �(�� − ��) ± ��(�� + ��) = 0 for 
any �, � ∈ �, then N is a commutative ring. 
 
Proof of Theorem 2.2. By hypotheses (��), we have 
 

�(���) = ��(�� − ��)�� , ∀ �, � ∈ �                                                                           (2.7)       
 
Substituting � by �� in (2.7) and using the Fact 2.6 (i) and (ii), we find that 
 

�(���)� = ��(�� − ��)����   ∀ �, � ∈ �.                                                                              (2.8) 
 

  In view of a derivation d, one can write  
 

  ��(���)�� = �(���)� + (���) �(�)                                                                            (2.9)          
             
 Putting the results of (2.7) and (2.8) in (2.9), we get 
 

��(�� − ��)���� = ��(�� − ��)���� + (���)�(�). 
 
This implies that 
 

 (x o y) �(�) = 0  ∀ �, � ∈ � . 
 
The rest of the proof follows immediately from proof of Theorem 2.4 (iii) in [15]. 
 
By hypotheses (��), we have 
 

�(���) = −��(�� − ��)�� , ∀ �, � ∈ � .                                                                                  (2.10)       
 
Substituting � by �� in (2.10) and using the Fact 2.6 (i) and (ii), we find that 
 

�(���)� = −��(�� − ��)����   ∀ �, � ∈ �.                                                                            (2.11) 
 

  By definition of derivation d, we have  
 

  ��(���)�� = �(���)� + (���) �(�) .                                                                        (2.12)    
                   
 Combining Equations (2.10) and (2.11) in (2.12), we get 
 

 −��(�� − ��)���� = −��(�� − ��)���� + (���)�(�). 
 
This implies that 
 

(x o y) �(�) = 0  ∀ �, � ∈ �. 
 
The rest of the proof follows immediately from proof of Theorem 2.4 (iv) in [15]. 
 
As a consequence of Theorem 2.2, we get the main result of [15]. 
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Corollary 2.2.1 ([15, Theorem 2.4]). Let �  be a prime near-ring and there exist nonnegative integers 
� ≥ 0, � ≥ 0. If  � admits a non-zero derivation d such that either �(�� + ��) − ��(�� + ��)�� = 0  or  
�(�� + ��) + ��(�� + ��)�� = 0  for any �, � ∈ �, then N is a commutative ring. 
 
Corollary 2.2.2. Let � be a prime near-ring and there exist nonnegative integers � ≥ 0. If � admits a non-
zero derivation d such that either  �(�� + ��) ± (�� − ��)�� = 0 or �(�� + ��) ± ��(�� − ��) = 0  for 
any �, � ∈ �, then N is a commutative ring. 
 
Proof of Theorem 2.3.   By hypotheses (��), we have 
 

�([�, �]) = ��(�� + ��)��     ∀ �, � ∈ �.                                                                        (2.13) 
 
Put � by �� in (2.13) and using the Fact 2.6 (iii) and (iv), we find that 
 

�([�, �]�) = ��(�� + ��))����   ∀ �, � ∈ �.                                                                             (2.14) 
 

  By definition of d, one can write  
 

     �([�, �]�) = �([�, �])� + [�, �] �(�).                                                                                         (2.15)    
                   
 Combining Equations (2.13) and (2.14) in (2.15), we get 
 

 ��(�� + ��)���� = ��(�� + ��)���� + [�, �]�(�). 
 
This implies that    [�, �]�(�) = 0        for all    �, � ∈ �     
 

 ���(�) = �� �(�)        for all    �, � ∈ �.                                                                                   (2.16) 
 
Putting � by �� in (2.16) and using (2.16), we find that  
 

[�, �] � �(�) = 0  ∀ �, �, � ∈ �.                                                       (2.17) 
 
This implies that  
 

[�, �] � �(�) = 0  ∀ �, � ∈ �.                                                       (2.18) 
 
Since N is a prime near-ring, so Equation (2.18) gives  
 

 for each  � ∈ �,  [�, �] = 0 or  �(�) = 0 .                                                                                    (2.19)   
 
Clearly, if  [�, �] = 0,   � ∈ Z(N)  . Consquently, if � ∈ Z(N)   then �(�) ∈ Z(N).  Thus, Equation (2.19) 

yields that for all  � ∈ N, d(y) ∈ �(�),  implies d(� )Ì  �(� ). In view of Fact 2.5, it gives that N  is a 
commutative ring. 
 
Now by the property (��), we have  
 

  �([�, �]) = −��(�� + ��)��  for any �, � ∈ �.                                                      (2.20) 
 
Setting x by xy in (2.20) and using the Fact 2.6 (iii) and (iv), we find that  
 

�([�, �]�) = −��(�� + ��)���� for all �, � ∈ �.                                         (2.21) 
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By definition of derivation, we have 
 

 �([�, �]�) = �([�, �])� + [�, �]�(�).                                         (2.22) 
 
Using Equation (2.20) and (2.21) in (2.22), we get  
 

−��(�� − ��)���� = −��(�� − ��)���� + [�, �]�(�).                                               (2.23) 
 
This implies that    
 

[�, �]�(�) = 0 for all �, � ∈ �.                                                                                    (2.24) 
 
The remaining proof is the same as above condition (��). 
 
The following results are the immediate corollaries of Theorem 2.3. 
 
Corollary 2.3.1.[15, Theorem 2.2] Let � be a prime near-ring and there exist nonnegative integers � ≥
0, � ≥ 0.  If  �  admits a non-zero derivation d such that either  �(�� − ��) − ��(�� − ��)�� = 0   or 
�(�� − ��) + ��(�� − ��)�� = 0  for any �, � ∈ �, then N is a commutative ring. 
 
Corollary 2.3.2. Let � be a prime near-ring and there exist nonnegative integers � ≥ 0. If � admits a non-
zero derivation d such that either  �(�� − ��) ± (�� − ��)�� = 0  or �(�� − ��) ± ��(�� − ��) = 0  for 
any �, � ∈ �, then N is a commutative ring. 
 
Proof of Theorem 2.4. By hypotheses (��), we have 
 

�(���) = ��(�� − ��)��     ∀ �, � ∈ �.                                                              (2.25) 
 
Substituting � by �� in (2.25) and using the Fact 2.6 (i) and (ii), we find that 
 

�(���)� = ��(�� − ��)����   ∀ �, � ∈ �.                                                                       (2.26) 
 

  By definition of derivation d, we have  
 

  ��(���)�� = �(���)� + (���) �(�).                                                                           (2.27)          
            
 Substituting (2.25) and (2.26) in (2.27), we get 
 

 ��(�� − ��)���� = ��(�� − ��)���� + (���)�(�). 
 
This implies that 
 

 )(xoy �(�) = 0  ∀ �, � ∈ �  

 
���(�) = −�� �(�)        ∀    �, � ∈ �.                                                                              (2.28) 

 
Replace  � by t x in equation (2.28) and use (2.28) to obtain        
 

  ����(�) = −����(�) = (−�)�−���(�)� = (−�)(−�)��(�)  ∀ �, �, � ∈ �. 
 

   or   ��� − (−�)(−�)���(�) = 0 ∀  �, �, � ∈ �. 
 

Taking � by – �, then (−�� + ��)��(−�) = 0 ∀ �, �, � ∈ �. 
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              −[�, �]��(−�) = 0 ∀ �, �, � ∈ �. 
 
This implies that 
 

 [�, �]��(−�) = 0 ∀  �, �, � ∈ �.                                  (2.29) 
 

Since � is prime near–ring, we have for each � ∈ �, 
 

 �(�) = 0 or      � ∈ �(�).                                                                       (2.30) 
 

We know that if    � ∈ �(�), then  �(�) ∈ �(�). Hence (2.30) forces that for all 
 

    � ∈ �, �(�) ∈ �(�),  that is, �(�)Ì �(�).   
 

In view of the Fact 2.5, N  is a commutative ring.  
 
Next, we assume that the condition  (��)  
 

�(���) = −��(�� − ��)��  for any �, � ∈ �.                                                    (2.31) 
 
Putting x by xy in (2.31) and using the Fact 2.6 (iii) and (iv), we obtain  
 

��(���)�� = −��(�� − ��)����  for all �, � ∈ �.                                      (2.32) 
 
By definition of derivation �, we have 
 

 ��(���)�� = �(���)� + (���)�(�).                                         (2.33) 
 
Use (2.31) and (2.32) in (2.33) to get  
 

−��(�� − ��)���� = −��(�� − ��)���� + (���)�(�).                                                     (2.34) 
 
This implies that   (���)�(�) = 0 for all �, � ∈ �.     
 

�� �(�)  =  −�� �(�)    ∀ �, � ∈ �.                                       (2.35) 
 

But (2.35) is the same as (2.28), arguing as in the above proof of Theorem 2.4  we reached that N  is a 
commutative ring.  
 
The following results are immediate corollaries of Theorem 2.4. 
 
Corollary 2.4.1. Let � be a prime near-ring and there exist nonnegative integers � ≥ 0, � ≥ 0. If  � admits 

a non-zero derivation d such that either  �(�� + ��) − ��(�� + ��)�� = 0  or  

  for any then N is a commutative ring. 
 
Corollary 2.4.2. Let � be a prime near-ring and there exist nonnegative integers � ≥ 0. If  � admits a non-
zero derivation d such that either  �(�� + ��) ± (�� − ��)�� = 0  or �(�� + ��) ± ��(�� − ��) = 0  for 
any �, � ∈ �, then N is a commutative ring.   
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3 Counterexample 
 
The following example shows that the primeness hypothesis in Theorems 2.1, 2.2, 2.3 and 2.4 are necessary 
even in the case of arbitrary rings. 
 

Example 3.1. Let �  be a non-commutative ring and � = ��
0 0 �
0 0 �
0 0 �

� |�, �, � ∈ ���.  Define a map     

�: � → � by  � �
0 0 �
0 0 �
0 0 �

� = �
0 0 �
0 0 0
0 0 0

�, one can easily check that; d is a non-zero derivation on N.                 

Let � = �
0 0 �
0 0 0
0 0 0

� , � ≠ 0. Then ��� = {0}, which shows that � is not prime. In addition if � satisfies 

either �([�, �])  = ��� or �(���) = [�, �] for all �, � ∈ �,  and N is a non-commutative ring. Also, an 
alternate example can be found in [15]. 
 

4 Conclusion 
 
In this paper we study some conditions to prove the commutativity of prime near–rings involving 
derivations. We conclude the paper by discussing some issues for future research work. The conditions (c1) - 
(c8) are assumed to be held for all x, y in N. Are Theorems 2.1-2.4 still true via generalized derivations or if 
these conditions hold for only x, y in S  N, where S is a suitable non-zero ideal of N? Finally, we present 
some open problems.  
 

5 Open Problems 
 
One can look more general constraints on the derivation would be interesting.  

 

 5.1.     Let � be a prime near-ring and there exist nonnegative integers � ≥ 0, � ≥ 0.  
            If � admits a non-zero generalized derivations d such that  
            �(�� − ��) ± ��(�� + ��)�� = 0 or �(�� − ��) ± ��(�� − ��)�� = 0,  
            for all �, � ∈ �, then N is a commutative ring. 
 

5.2.      Let � be a prime near-ring. If  � admits a non-zero skew-derivation  
            (skew-generalized) d such that either, any �, � ∈ �,  

           �(�� − ��) ± ��(�� + ��)�� = 0 or ,0)()(  qp yyxxyyyxxyd   

           � ≥ 0, � ≥ 0 are integers, then N is a commutative ring.  
 

5.3.     Let � be a prime near-ring and there exist nonnegative integers � ≥ 0, � ≥ 0. 
           If  � admits a non-zero multiplicative derivation (multiplicative generalized) d  
            such that    �(�� − ��) ± ��(�� + ��)�� ∈ �(�)  or  
           �(�� − ��) ± ��(�� − ��)�� ∈ �(�) for any �, � ∈ �, then N is a  
            commutative ring. 
 

One can see the constraints such as commutativity of torsion free near-rings.  The properties (��) − (��) are 
assumed to be held for all �, � ∈ �.  Do Theorems (2.1), 2.2, (2.3) or (2.4) true if these conditions held for 
only  �, � ∈ �Ì �, where �  is a non-zero ideal (semi group ideal) of prime near- ring? 
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