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Abstract

The dynamic analysis of prestressed rectangular plate with general boundary conditions
and under partially distributed loads moving at varying velocities is investigated in this
paper. A procedure involving the generalized two-dimensional integral transform with beam functions as
kernel of transformation is used to reduce the governing fourth order partial differential equation to a
second order coupled ordinary differential equation. The Struble’s asymptotic technique is then
used to simplify this equation to make it amenable to the methods of integral transformation and
convolution theory. By means of these, the analytical solution valid for all variants of classical boundary
conditions to the dynamical problem is obtained. The analytical solution and numerical analysis show that
the critical speed for the moving distributed mass problem is reached earlier than that of the moving
distributed force problem for both illustrative examples considered. The results further show that an
upward variations of foundation stiffness K, rotatory inertia correction factor R, subgrade modulus G and
axial force N decrease the response amplitude of the rectangular plate. Finally, for fixed pertinent
structural parameters, the transverse displacement response of the rectangular plate under moving
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partially distributed forces is not an upper bound to the case when subjected to moving partially
distributed masses. Hence, safety is not guaranteed for a design based on the moving partially distributed
force problem.

Keywords: Prestressed rectangular plate; general boundary conditions, integral transformation; critical
speed.

1 Introduction

This paper is sequel to an earlier one by Oni and Ogunbamike [1] that considered the response to distributed
loads moving at varying velocities of an elastic isotropic rectangular plate resting on Pasternak foundation.
In particular, this paper is a generalization of the theory advanced in [1]. The study of plate flexure under
moving loads forms a very important structural element in Engineering design and construction. It has also
become the objective of various investigations in the field of applied Mathematics and Physics. In general,
problems of this type are mathematically complex when the inertial effect of the moving load is taken into
consideration Fryba [2], The first major breakthrough in this field of research was the work of Stanisic et al.
[3] who solved the problem of simply supported non-Mindlin plate under a multi-masses moving system by
making use of an approximation of the Dirac delta function. Only the inertia terms that measure the effect of
local acceleration in the direction of the deflection was considered. The method of solutions was based on
the Fourier Sine transform technique. The solutions so obtained were shown to converge very rapidly. The
work of Stanisic et al. was taken up much later by Gbadeyan and Oni [4] who investigated the dynamic
analysis of an elastic plate continuously supported by an elastic Pasternak foundation and traversed by an
arbitrary number of concentrated masses. All the components of the inertial terms were considered and the
rectangular plate was taken to be simply supported. Huang and Thambiratnam [5] in a similar manner
studied isotropic homogeneous elastic rectangular plate resting on an elastic Winkler foundation under a
single concentrated load. Finite strip method was employed. Numerical examples show that when the load
moves with zero or initial velocity, the dynamic response of the structure is steady and unlike the response
due to the sudden application of a load. Worthy of note, also, is the work of Shadnam et al. [6] who
investigated the dynamics of plates under the influence of relatively large masses, moving along an arbitrary
trajectory on the plate surface. As an example, the dynamic response of a rectangular plate, simply supported
on all its edges, under a mass moving parallel to one of its sides and also travelling along a circular trajectory
is presented by means of operational calculus. Analysis shows that the response of structures due to moving
mass, which have often been neglected in the past, must be properly taken into account because it often
differs significantly from the moving force model. Amiri et al. [7] investigated the elastodynamic response
of a rectangular Mindlin plate under concentrated moving loads as well as other arbitrarily selected
distribution area of loads. Closed form solution for the moving force load case was derived using direct
separation of variable and eigenfunction expansion method. A semi-analytical solution was presented for
moving mass load case. Although the aforementioned investigations involving concentrated loads are
impressive, they do not represent the physical reality of the problem formulation as concentrated masses do
not exist physically. in practice moving loads are in the form of moving distributed masses which are
actually distributed over a small segment or over the entire length of the structural member they traverse
Andi et al. [8]. Research works on two-dimensional structural members traversed by distributed loads are
scanty. Researchers in this are Dada [9], Gbadeyan and Dada [10] and Isede and Gbadeyan [11] to mention a
few. More recently, Gbadeyan and Dada [12] used a finite difference algorithm to investigate the
elastodynamic response of a Mindlin plate subjected to a distributed moving mass. The simply supported
edge condition was used as an illustrative example. It was found that the maximum shearing forces, bending
and twisting moments occur almost at the same time. It is noted in these works that numerical simulations
are adopted as analytical techniques are herculean. In a vibrating system such as this, it is pertinent to treat
the phenomena of resonance which are not revealed through numerical simulations. And as such, analytical
solutions are desirable as solutions so obtained often shed more light on vital information about the vibrating
system. To this end, Andi and Oni [13] undertook the dynamic behaviour of an elastic isotropic rectangular
plate under travelling distributed loads. The method of solution is purely analytical. The solution procedure
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is based on the two dimensional Finite Fourier sine transform to transform the governing fourth order partial
differential equation to a coupled second order ordinary differential equation which is later simplified by the
asymptotic method of Struble to make it amenable to simpler Laplace transform and convolution theory.
Other researchers who worked on this include Wu [14] Andi and Oni [15], Oni [16], Oni and Ogunyebi [17],
to mention but a few. It is however noted that these authors considered dynamical system in which the
traversing loads move with constant velocities. Infact, the more practical cases when the velocities at which
these loads moves are no longer constants but vary with time have received but little attention in literature.
Thus, this paper therefore investigates the flexural vibrations of prestressed rectangular plate under partially
distributed loads with general boundary conditions. Both gravity and inertia effects of the uniformly
distributed masses are taken into consideration, and the plate is taken ton rest on Pasternak foundation. The
solution technique which is analytical and suitable for all variants of classical boundary conditions involves
using the generalized two-dimensional integral transform, the expression of Heaviside function as a Fourier
series and the use of modified Struble’s asymptotic technique to solve the problem of the dynamical system.

2 Governing Equations

Consider the dynamic transverse displacement V(x,y,t) of the mid-surface of a prestressed isotropic

rectangular plate of span L ) along the y-axis and span L along the x-axis carrying a partially distributed

mass moving with variable velocity ¢ along a straight line y = y,, parallel to the x-axis.
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Fig. 1. Rectangle plate subject to uniform distributed loads

If the plate model is resting on a Pasternak foundation, V' (x, y,t) is governed by the fourth order partial
differential equation given by

at a8y ar (a2 82 Y O (x, y,t OV (x, y.t
D| =—+——| - uR" = | V(x,y,0)-| N, ( - )+Ny ( - )
ox oy ot ox oy ox oy

o azzjV(x,y,r)=PF<x,y,r>{1—A*[V(x,y,r)]} (1)
g

2

—
ox* oy

E is the young modulus, V is the Poisson’s ratio (v < 1), £¢is the mass of the plate per unit length, x is the

position coordinate in x-direction, y is the position coordinate in y-direction, fis the time, % is the plate

. . . . . 0. .
thickness, K is the foundation stiffness, Gis the shear modulus and R~ is the measure of rotatory inertia,,
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Eh®

D = m is the bending rigidity of the plate and is constant throughout the plate, Pr(x,y,t) is the
-v

continuous moving force which travels from point y = y, on the plate along a straight line parallel to the x-

axis, g is the acceleration due to gravity.

In view of equations (2), (3), (4) and (5), equation (1) can be written as [1]

4 4 4 2 2 2
D[a Vix.p,0)  , 0V (xy,0) 0 V(x,y,t)}rﬂ 0V (x.y.t) 0V (x,yt) o OV (X901

ox* ox’oy*? oy* ot? N ox’ 7 oy’ 2
4 4 2 2
— uR® 0 V(zx,yz,t)+ 2 V(fc,yz,t) KV (x,9,)— G 0 V(x,zy,t)Jr 2 V(x,zy,t)
ox“0t dy~ot ox oy
2 2
+ MH x—(x0 +ct +'Talz)]l'-l|:y—y0]|:(c+al)2 ° Véx,zy,t) + ° Vf;;;y,t)
z . 2

OV (x,3.0) , OV (x,.0)

+2(c + at
(erat)— ot ox

= MgH [x—(x0+ct+%alz)]H[y—y0]

Equation (2) is the fourth order partial differential equation governing the flexural motion of a prestressed
isotropic rectangular plate on Pasternak foundation under the action of uniform partially distributed loads
moving at non-uniform velocity. The boundary conditions are taken to be arbitrary, while the initial
conditions without any loss of generality are given by

0 = oV (x,y,t) 3
Vix,y,t) 0 7& 3

3 Solution Technique

The analysis of the response to a moving partially distributed mass of isotropic rectangular plate resting on a
Pasternak foundation and subjected to arbitrary boundary conditions is carried out in this section by
employing the solution technique already alluded to [4, 5, 6, 7]. In particular the generalized two-
dimensional integral is defined as

~ Lx L,\"
V(jky= [ [V (x,p.00,(x)V,(y)drdy @)
0 0
with the inverse
_ o0 o0 ﬂ ﬂ ~ . .
V(x:yat) = Z Z__V(]ak:t)le(x)Vk (y)
‘/:lk:IUj U, (5)
where
L, L,
U, = I,uij(x)dx ; U, = [uVi(y)dy (©)
0 0

where V' f (x)and Vi (v)are respectively the beam functions in X and y directions defined respectively as

l_,x

. Ax A.x
V,(x)=sin 7

Ax
+ 4, cos + B, sinh —/—+ C cosh — (7
’ L / L

x X X x
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Ay

V.(y)= + B, sinh /1 +C, cosh Ay (®)

y y y y
where A ;B j,C j,A «»B,and C, are constants and 1 j , A, are mode frequencies which are determined by

using appropriate boundary conditions. Applying the generalized two-dimensional integral transforms (4),
equation (2) takes the form

X TO0, L, L)+ X F(0)+V,(jk,t)= X 5 F(t) = Xy, Fgy (1) = X (F (1)
— X F O+ XV (Jok,t) = X g F () = X o Fily () + Fp (1) + F (1)

9
+Fl,f)(t)+FG°(t):M—ng(y0)Vj(xo+ct+%atz) ©)
7
where
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00 ot (15)
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L ,V
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It is recalled that the equation of the free vibration of a rectangular plate is given by
4 4 2
Ox Ox ay Oy ot
Substituting
V(x, y,0) =V;(x)V, (y)cos @, ;¢ (22)
into equation (21) above, where @ is the natural circular frequency of a rectangular plate, we obtain
Dl Gy )+ 2v W)+ v W ()] w5 v W (v) = 0 23)
It is well known that for a simply supported rectangular plate, a)j2 « 18 given by
-4 272 2 4_4
2 jirt Jk*rt k'
W = D, L4 +2 JE Li + L‘; 24

Multiply equation (23) by V(x,y,t)and integrating with respect to X and y between the limits 0, L and

0, L, respectively, we get

L. L, ‘ L L,

FoIV Gy [ (W (dedy +2 1 1V eyt JGep 'y Jaedy (25)
Ly Lx L)"

4 J(;gy(x LV, t)V"(x)V "(y )dxdy = %a)»?wk g gV(x,y,t)V](x)Vk (v )dxdy
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In view of (11), we have
0 H 2 —(.
F) (t):Bwj’kV(],k,t) (26)

Since V' (p,q,t)1is just the coefficient of the generalized two-dimensional finite integral transform

V(x,y,t) = i iiif(p,q,t)Vp (x)Vq (y) (27)
pzlqlep Vq
It follows that
V(x, p0t)= 3 i# Vﬁf(p,q,t)V,ﬁ'(X)Vq () (28)
p=lg=1Vp Vg

FBol(t): ililfViVi(p’qJ)sul(p’j)Suz(k,CI) 29
pea= p
where
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FBz(t) D V(pvq’t)gbl(p:J)Shz( »q)
p:Iq:IVp Vq
and
L, L,
Su(p )= 1V, W, (s Steq) = [V 0, 0l (32)
FC(']I([): ililVLViﬁ(pﬂq7t)gal(p5j)sa2(k’q) (33)
‘=33 L Ly j (34)
Fcz(t) z2 Vtt(paq7t)gbl(p7])sb2(k7q)
p=lg=1 Vp Vq

In order to evaluate the integrals (17) — (20), use is made up of Fourier series representation of the Heaviside
function namely,

11 asin(2n+D)x—(x, +ct + Lat?)]
Hlx—(x,+ct+Ltat?)|=—+— 0 2 (35)
[ (%o 2 )] R 2n +1
Similarly
Lol g sinl( 2m + D(y = yy)] (36)
#l y()]_4+7rmz:0 2m + 1

Using equations (35) and (36), one obtains
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B cos(2n + 1)7[[)(? - (xo +ct +%at2)]

S (ps j>m)S 5k, Q)J:|

2n+1

1| ®o o »cos(2n+1)r]x— Lar? 2m+1 -

+7[2{EIEIEOE‘OCOS( = )ﬂ[);n J(rxf+a+2at ) COS( m;m)ffy yO)Sdl(p,j,n)Sd(k,q,m)
0 0 W 0 — 1 2 1 —_

_YYYTY COS(2n+1)ﬂ'[X (xo +ct+5at )] sm(2m +1)7r(y yO)Sd,-(p,j,n)Scz(k,q,m)
p=1q=1 m=0n=0 2n+1 2m+1
0 0 0 qf — 1 2 —

333 sm(2n+1)7r[x (xo +ct+at )] cos(2m +1)7z(y yO)Sdz(p,j,n)Sd(k,q,m)
p=lg=1m=0n=0 2n+1 2m+1
© © © © qf — 1 2 . _

FYSSY sm(2n+1)7z[x (xo +ct+5at )] sm(2m+1)zz(y yo)Sdz(p,j,n)Sez(k,q,m)}V(p,q,t)
p=1¢=1m=0n=0 2n+1 2m+1

l 22 ) 1| 22 2 sin2m+1)z(y-
+{zlzlsbm;a,ﬂsaz(k,q)—”[z_ £ 5 M Dbn)g g mSa.

16 r=lq= p=lg=1m=0 2m+1
0 o o 2m+1 - o o o sin(2n+1 e
b3 5 gl sbon)e (e - $ g e bbb+t o )]Sez(p,j,n)s,,l(k,q)
p=lg=1m=0 2m+1 p=lg=1n=0 2n+1
0 ® ® _ 1.2
+EES cos(2n +1)7r[x (xo +ct+yat )]ng(p,j,n)Sbl(k,q)}
p=lg=1n=0 2n+1

+12|:ii i i cos(Zn +1)7r[x—(x0 +ct+1at )] cos(2m +1)”(y_yO)Sgl(p,j,n)Sc3(k,q,m)

77| p=1g=tm=0n=0 2n+1 2m+1

cos(Zn + l)ﬂ[x - (xo +ct+ %atz)] sin(Zm + l)ﬂ(y - yo)

_zzzz Sel(ijsn)Scél(ksqam)
p=1g=1 m=0n=0 2n+1 2m+1
® o o o g — 1 q12 _
SYYT Y s1n(2n + l)ﬂ[x (xo +ct+yat )] cos(Zm + 1)72'(_)) yo)Se2 (Do jom)S.o(k g, m)
p=1g=1 m=0n=0 2n+1 2m+1
® o o 0 qf — 1 2 : _
333> sm(2n +1)7r[x (xo +ct+rat )]sm(Zm + 1)72'(_)) yO)Sd (psjsm)S.. (k,q,m):|}Vn (p,q,t)
p=1q=1 m=0n=0 2n+1 2m+1
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i sin(2m + 1)72'()/ - yo)
Z _ N~ 7
=0 2m+1

+(c+at){{22sa3(p NS, (k, q)} ”{

8 p=1g=1

£ X2 COS(2m+]) (y )’o)
k,
+ZZI”§0 Im+l Sd( q, m)Sa3(P Nl

“ﬂMa

5

lg

Sc4 (k’ q, m)Sa3 (p’ j)

Im

sin(2n +1) ﬁ[x— (xo +et+tar’ )]ng(p, imS. e

1n=0 2n+1
sin(2n + 1)zfx = (x, +cr+ L ar? )|
1n=0 2n+1

i i i i cos(2n+l)7r[x—(x0 +ct+%al‘2 )] cos(2m +1)7r(y—y0)

p=1g=1m=0n=0 2n+1 2m+1

S, (p Jom)S (6, )]

S 2 (p5 Jsm)S 5 (k, q,m)

cos(2n + 1)7[[)6 - (xo +ect+Lat’ )] sin(2m+D)z(y-y,)
p=lg=1 m=0n=0 2n+1 2m+1
= ooz 4 sin(2n+ l)ﬂ'[x— (xo +ct+Llat’ )] cos(2m+1)z(y—y,)
_pzzlqzzlmZ:Or;VjV/‘ 2n+1 2m+1

Ser (P, Jim)S 4 (k,q,m)

ng(psj:n)sc3(k5q’m)

ERNC R sin(2n+l)7r[x—(x0+ct+%at2)] sin(2m+1)7r(y—y0)
+

Zzlmzzlozo 2n+1 2m+1
sin(2m+1)7r(y—yo)S
0 2m+1

S 02 (ps jsm)S oy (kg m) |7, (pr.t)

Ms

ek q.m)S 5 (p. )

lg=1m

tof £ 508~ ] 55

N ii ism(zm +)r(y—y,)

S(.3(k,q,M)S[,3(p,j)
1m=0 2m+1

sin(2n+1)7r[x—(x0 +cl+%at2)]S (p i Sk q)
g2 P> J> 119 438K

1n=0 2n+1
e COS(2n+1)7z'[x—(x0 +ct+1Lat’
p=1g=11=0 2n+1

+L2 ii i cos(2n+1)7r[x—(x0 +ct+%a;2)] cos(2m+l)7r(y—yo)

7| p=lg=1m=0n=0 2n+1 2m+1

mﬂ%ﬁm%@ﬂﬂ

S (P, Jsn)S5(k,q,m)

& & & & o8 2n+1)ﬂ'[X—(x0 +Ct+%atz)]sin(2m+l)7r(y—y0)

ZZ:]EOHZ:;) 2n+1 2m+1

-3 iiSin(z"H)”[x_(xo+Cf+%alz)]cos(2m+1)ﬁ(y_yo)
m=0,

n=0 2n+1 2m+1

S (P, jsm)S. 4 (k,q,m)

S (P, jsn)S 5 (k,q,m)

+Zi = sin (27 +1) [x—(xo+ct+%at2)]sin(2m+1)7r(y—y0)
p=lg=1m=0n=0 2n+1 2m+1

ﬂ@]mWJk%MH V,(p.q.t)
(41)

MgL L, A, , A, 2,
= M/l 0,(4, j) + Cos L—’(x0+ct+%at )—A].SmL—’(xO+ct+%at ) B ,Cosh — (x0+ct+ at )
i

x x x

4,
-C, Smh (x0+ct+ at )+ 0, (4, j)—Cos lzyo + A, Sin /12)/0 + B, Cosh lzyo +C,Sinh AL }

X y y ¥

0,(4,)) = —Cos/lj + AjSin/lj + BjCOSh ﬂj + CjSinh/lj (42)

0, (A, k) =—Cos A, + A,SinA, +B,CoshA, +C,SinhJ, (43)

M
T, = (44)
uL L

xy

11
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L‘C
Sa(p,j)= ({V,(X)V;'(X))dx,
L.v L,
S, (k,q)= { V.2V, (»)dy Ss(p, )= { V. (xX)V, (x)dx
Lr Ly
Sy(p.J)= (I]V,(X)V,,(X)dxs Sy, (k,q) = {VA WV, (»)dy
L, L,
Salk,qg,m)= {Sin( 2m + DV, (»IV [ (y)dy, So(k,qg,m)= gCOS( 2m + DayV  (y)V,'(y)dy
Ly Ly
Sk, q,m)= gSin( 2m + DV, (y)V, (y)dy, Sk, q,m)= gCOS( 2m + DmyV, (¥, (y)dy
LI LI
Sa(p,j)= [sin(2n+ D)V ;(x)V,(x)dx, S, (p, J)= [eos(2n+D)mxV ,(x)V,(x)dx
0 0
L, L, (45)
S, (p,j)= [sin(2n+D)mxV ,(x)V,(x)dx, S (p, j)= [cos(2n+1)mxV ,(x)V,(x)dx
0 0
L, L,
Sa(p,j)= [sin(2n+D)mV;(x)V, (x)dx, S (p,j)= [cos(2n+ D)V (x)V, (x)dx
0 0

Equation (41) is the transformed coupled non-homogeneous second order ordinary differential equation
describing the transverse motions of the isotropic rectangular plate resting on elastic foundation under the
action of partially distributed masses travelling at non-uniform velocity. It is now the fundamental equation
of our dynamical problem and holds for all arbitrary boundary conditions. The initial conditions are given by
V(j.k,0)=0; V(). k,0)=0 (46)
In what follows, two special cases of equation (41) are discussed.

3.1 Solution of the Transformed Equation

3.1.1 Isotropic rectangular plate traversed by moving partially distributed force

The approximate model of the isotropic rectangular plate which assumes the inertia effect of the moving
partially distributed mass A as negligible is obtained when the mass ratio I'| is set to zero in equation (41).

Thus, settingI'; = 0 in equation (41), one obtains

~ ~ N =
Vik)+ @]V (jk,t)- ﬂ >
o

B N =
z Vi(p.q,)S (P, ))S (k)= —=2Z XV (p,q.0)S,,(p, ))S,,(k,q)

1g=1 MU p=lg=1

. . ] (47)

K ~ . o o . o o .
+;V(1,k,t)—Ro[ZIZIVK,(p,q,t)Sal(p,J)Saz(k,q)+ ZIZIV,,(p,q,t)SM(p,J)sz(k,q)
p=lg= p=lg=

8

Gl[e == _ = = , MgL L,
——[Z 2V (p.q:1)S, (P, )S,n(k,q)+ XX V(p,qJ)Sm(p,J)Shz(ksq)} = —"2[0,(4, )

gl L
i | p=1q=1 pelg=1 HA Ay
at 2)

~

A A
— Cos L/ (xo +ct+%al2)— A, Sin LJ (xo +ct+%at2)— B Cosh LJ (x(, +ct+ 4+

x x x

!
~c, Sinh 7 (xo+ct +Lat?)+Q,(A.k)— Cos ﬂzy" + A, Sin ﬂzyo + B, Cosh ﬂzyo +C, Sinh 1£y }

x ¥ y ¥ y

12
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This represents the classical case of a moving distributed force problem associated with our dynamical
system. Evidently, an analytical solution to equation (47) is not feasible. Consequently, we resort to a
modification of the asymptotic technique due to Struble. By this technique, we seek the modified frequency
corresponding to the frequency of the free system due to the presence of the effect of the rotatory inertia. An
equivalent free system operator defined by the modified frequency then replaces equation (47). To this end,
equation (47) is rearranged to take the form

*

eLL

(ﬂ;iu,k,t)— e [(G+Nx)sm<j,j>sﬂ2<k,k>+(6+Nv Js,,, G j)Sm(k,k)]
(1= L,L [S(s DS.a ks k) + S0 /) Sy (ks K)])

& z &
- L.L,S,(j, )S.(k,k
(- LeLy[S,,(/. j)Saz(k,k)+S,,,(j,j)sz(k,k)]),Eg{[ LSl N30

V(j k1)

V(o k1) +

P#jg*] (48)
. o > LXLV . . . . -~
+LXLVSM</,J)S,,z(k,k)]l/,,<p,q,z>+ﬁ[(G+NX)SMU,/)Sﬂ(k,k)+(G+Nv)sm<1,/)s,,z(k,k)] 7 (p.q.1)
0
P° A A,

= A, J)+ Cos—- t+Lat’)— A Sin—L Lat?

(1—s*L‘L,‘.[S“(j,j)saz(k,k)+Sm(j,j>sbz<k,k>]){Q'( R A

A A
B/COShL’(xUJrctJr%atz)CjSinhl"(x(,+ct+§at2):|
where
K . R° MgL L,

L g = , Pl ="y g (49)
,Bm/ Jk LxLy /1/1,-/11{ (Ais o)
V.(Ae,v,) =0,(A, k)— Cos %+ A, Sin %+ B, Cosh %+ C, Sinh % (50)

y v v v

Thus, we set the right hand side of equation (48) to zero and considering a parameter 770 <1for any

arbitrary ratio & defined as

*

o=t (51)
1+¢

It is observed that all the coefficients of the differential operator which acts on ¥ (j, k,) and V(p.q,,t)in

equation (48) can be expressed in terms of 0(770 )

£*=77°+0(77°2) (52)
1 0 .. .o - wh
=\U=n"L.L S, )S0nk,k)+S,,(J, j)Sp,(k, k) where
(U GRYS AT TEr TR BTt G- DSisk. )
(53)
‘,70 LL,[S, (o )S,0 (ko k) + Sy, (s j)sz(k,k)] <1 (54)

Substituting equations (52) and (53) into the homogeneous part of equation (48), one obtains

13
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0

L
TG+ NS0 (o NS (k) + (G + N ), G DS (k,k)]] :

i};t (j’kat) + (ﬂ;ﬁ/ﬁ(Ja k,t) -
0
(41" L L[S0 G 1)S 12 Ues B+ Sy G DSy (ks OV Gkt = (140 L L, NS, (G 1)S 1y (ks ) (55)
+ 85,0 DS ]S S L, 800G DS kbt LL, S, DS k)Y, (pogut)
p=l 4=

P#jq#j

L —~
S (G + NS, o DS (ke K)+ (G + N, )8, G DS e (s q,o} =

0

when 770 is set to zero in equation (55) a situation corresponding to the case in which the effect of the cross-
sectional dimensions of the rectangular plate is regarded as negligible is obtained,. In such a case, the
solution of equation (55) can be obtained as

7(j ko) = Ay Cos|ayt =g, | (56)

where 4,,and ¢, are constants.

Since 770 <1, Struble’s technique requires that equation (55) be of the form

P(j k1) = C(j kot )Cos| Byt — s ko) |+ 07 (o est) + 0" ) (57)

where C( j,k,t) and ¢( j,k,t) are slowly varying function of time. To obtain the modified frequency,
equation (57) and its derivatives are substituted into equation (55). After some simplifications and

arrangements, one obtains
C(jikt)Cos| Byt — (. ks )]+ 2 C(kt)p(j, ko 0)Sin [ B, — $j, k)|~ 2 C(j kB, Sin| B, t — $(j. k. 1)]
+CUk Wk, 1)Sin B,y — (), k1) + 2C(jk0)B, (. ko 1)Cos [ Bt — 4. k. 1)
— Uik, k, )] Sin Bt = 9, ko 1)~ CUik )82, Cos [, = # s, ks £+ W, (s K, t)+0(77“2)
(BTGl t) 40 B LL S0 1S, ) + S, 1S5, )]
7 LXL}

(G + NS, Gy DSa k) +(G + NS, (s Sk, k)]]( ik )Cos| Bt - pj. k07, k. 1))

5 2GStk 0+ L8, Sk DI, g o8] =40, 0.0)]

p=1
PEj q#j

2C(p.g, Wp. 4.0)Sin Byt~ H(p, q.1)] -2 Cp, 4.0)B,, Sin ,b’m,-t—¢(p,q,t)]
+Cp, q.0\(p, q,1)Sin Bt~ 8(p, 4. 0)|+ 2C(p. .0)B,,4(p. 4. t)Cos B, — #(p, 4.1)]

~Clp.q. )Hp. 0. 0)f Sin[B,,t - Hp.q.0)|- Cp. q.0)8, Cos B, ¢~ Hp. 0.0+ 1V (p.q.t ))

+in;’ [(G+NX)S o DS, k) +(G+ N, )8, (o )8,k NNk £)Co8 Byt — 9 s VT (o )}

(58)

neglecting terms to 0(772)

The variational equations are obtained by equating the coefficients of SlnLB ¢( J,k t)J and

Coslﬂmft - ( oNj,k, Z)J on both sides of the equation (58) to zero, thus one obtains

14
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~2C(jk1)=0 (59)
and
20kt )8,y d(iakot)+ 0 Bl L[S, Gy Sy (hak) + 8y (o NSy, (kB JC (iket )

7°L.L (60)
— X )

T[(G E NS o S as k)4 (G + N, )80 o )8, (i) Jo (ke ) = 0
U

Evaluating equations (59) and (60) one obtains

C(jikt)= Copr (61)
and
_ °L.L, . o
§()ko)= {M[(G + NS, (o S (k) + (G + N )5, (G 1S, (k)]
mf H (62)
n°f .L.L,

S G DS )+ 84, G Sy (kO + A

where CQMF and ﬂ.QMF are constants. Therefore when the inertia effect of the plate cross-sectional is

considered, the first approximation to the homogeneous system is obtained as

V(o ks8) = CopeCs|0 guget = Aguar | (63)
Where
770 LXLV . . . .
Tour = Boy 17—2/}2 #R' [(G+NX)Sal(],])Saz(k,k)Jr(G+Ny)Sb1(],])Sb2(k,k)] (64)
mf

L[S0 G DS o k) 5 8, (S (k)]

represents the modified natural frequency due to the effect of the cross-sectional dimensions of the plate. It

is observed that when 770 =0, we recover the frequency of the moving force problem when the effect of the
cross-sectional dimension of the plate is neglected. Thus, to solve the non-homogeneous equation (48), the
differential operator which act on ¥ (j,k,r)and V(p,q,1) is now replaced by the equivalent free system

operator defined by the modified frequency o) , i.¢
o2 2 ~ 0 A 1 2 /11' 1 2
Ve (Gsk,t) + ooup V(Jj.kit) = Poyp Ql(l,j)+CosL4(x0 +ct + yat )— AjSinf(xO +ct + yat )
* L, (65)

A, A
+ B/.Cosh L—j(xo + ct +%at2)—C/.Sinh L—j(xo + ct +%at2)

x X

where

0
O P

J -
O 1= 0 L2, [, (s 1)S 1o (s ) + S,y (o 13S0 G )

(66)
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The solution to (65) is obtained using the method variation of parameters in conjunction with Fresnel sine
and Fresnel cosine identities and the initial conditions; the solution becomes

_ Py,
V(j.k,t)= O_QW {Sin O onr t[PI3S(dIZ +d10t)+P|4C(d12 +d|0t)+PnS(dn +d|0t)+P]2C(d” +d|ot)
oMF

+P21C(d11 +d10t)_P22S(d11 +d10t)+P23C(d12 +d10t)_P24S(d12 +d10t)—leerf (dz1 +d20t)
-Qerfi (dzl +dzot)_leerf (dzz +d20t)_QMe’ﬁ (dzz +d20t) +0yerf (d21 +dzot)

. 1
-Qyerfi (dm +d20t)+Q23erf (dzz +dzot)_Q24€rﬁ (dzz +d20t)+

[Sin (4, -0 gue 1)

OMF
—Sin (4, +0 gy 1)+ A,(Cos (A, =y 1)=Cos (A, +0 e 1))=iB ,(Sinh (1, +iG py 1)
— Sinh (A, =6 gy 1)) = iC ,(Cosh (4, +i0 gy 1)=Cosh (A, =i0 gy 1))] = F |
~Cos 0y t[-P,C(d), +d yt)+ P,S(d, +d yt)+ PyC(d ), +d t)- P,S(d,, +d,t)
+ Py S(dy +dt)+ PpC(dy, +dgt)= Py S(dy, +dgt)= Py C(dyy +d gt)+iQ, erfi (d,y +dyt)
—iQ erf (dyy +dyyt)—iQ, erfi (o +d oy t)+ 0 erf (d, +dpgt)+i0 erf (dy +dyt)
+iQerfi (dy +dagt)—iQ perf (dy +doyt)—iQ,,erfi (dy, +dyt)

+3 [Cos (A, =0 gy 1)+ cOS( A, + & gy 1) = A, (Sin (2, =0 gy 1)+ Sin (A, +0 gy 1))
C our ; ; ; ;
— B ,(Cosh (A, +i0 yyy 1)+ Cosh (4, =i0 gy 1)) C , (Sinh A, +i0 gy )+ Sinh (A, =i g 1) )|+ F," ]}
(67)
Substituting equation (67) into (5), we have
_ 1 o o | Py Sine gt
Vix,y,t)= I e o [PIBS(dIZ +d10t)+P14C(d12+d10t)+P11S(d11 +d10t)
pj(x)pk (y) i=tk=1 O omr
+P,C(d,, +dot)+ Py Cd,, +d 1) =Py S(dy, +d 1)+ PuC(dy, +d,y1) = PyS(d,, +d,t)
7Ql]e’:fi(d2] +d20t)7Q126}'f(d21 +dzol‘)*lee’f(dzz Jrdzot)*Qme’ﬁ(dzz +d20t)
+Qzle'f(d21 +d20t)7Q2267ﬁ(d21 +d20t)+Q23€rf(d22 +d20t)7Q24erﬁ(d22 +dzol‘)
+ L [Sin(A, 0 gy 1)~ Sin(4, + 0 gy )+ A4, (Cos(A, ~ 0 gy 1)~ Cos (A, +6 gy 1))
O omr ' '
—iB (Sinh (4, +i0 gy 1) = Sinh (1, = iG gy 1))~ iC , (Cosh (4, +iG gy t) = Cosh (4, =iy )} Fy |
Py Cos oyt
7%[7 Pllc(dl] Jrdlot)+P|2S(d11 Jrdlol‘)J“PmC(dlz Jrdlot)fpms(dlz +dlot)
oMF
+P21S(d|1 +dmt)+P22C(d“ +d10t)7P23S(d12 +dmt)7P24C(d12 +d10t)+iQHerﬁ(d21 +d20t)
_inzerf(dﬂ +d20t)_inzerﬁédzz +d20t3+ iQMerf(dzz +d20t)+iQ2]erf(d2[ +d20t)
+inze’7(i(d21 +d20t)_iQ236rf d. +d2()t _iQZAerﬁ(dzz +d20t)
+ L [Cos (A, ~0 gy )+ €OS(A, + 6 gy ) — A, (Sin(A, — & e 1) + Sin(A, + 0 gy 1))
& our ; ; ; ;
. A Ax o Ax Ax
+F ]}Vk (v, ) Sin T+A].Cos ‘T+B_/.Stnh T+C].Cosh .
— B, (Cosh (A, +i0 gy 1) + Cosh(A, G g 1))~ C ,(Sinh &, +i0 yyp 1) + Sinh (A, =G gy 1))
(68)

which represents the transverse response to a partially distributed forces, moving at variable velocities of a
prestressed isotropic rectangular plate resting on Pasternak elastic foundation and having arbitrary end
support conditions.
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3.1.2 Isotropic rectangular plate traversed by moving distributed mass

In this section the mass of the moving load is considered commensurable with that of the structure, that is,
the inertia effect of the moving mass is not negligible. Thus, the mass ratio I} # 0 and the solution to the
entire equation (41) are required. This gives the moving mass problem. An exact analytical solution to this
dynamical problem is not feasible. Thus, as in the previous section, the modified asymptotic technique due
to Struble is resorted to. Evidently, the homogeneous part of equation (41) can be replaced by a free system
operator defined by the modified frequency due to the presence of rotatory inertia correction factor. To this
end, equation (41) can now be rearranged to take the form

2 FG v
Z(Lkﬁhﬁﬁ(j,k,m(C’QM* N6 )+ S G . gumm ok
1+I0G, G, G, g; Z:]/
+Ga(p,q,n,m,t)l7[(j,k,t)}=m[g(ﬂ ])+COS}L (xo +ct+1 yat ) (69)
ik 194 L,
A, A, A
—AJ.SinL—/(xO +ct+%at2)—BjC0shL—](x0 +ct+%at2)—C/.SinL—"(x0 +ct+;at2)}
Where
1 Cos(2m+l)7zy0 .
G, =15, 75,01 L g (7))
7T m=0 2m+1
1 iws (k,k,m)Sbl(] ]) ZM( 0+Ct+%at2)Sel(jsj’n)SaZ(kak)
om0  2m+1 a0 2n+1
LG SRt} )5 R) )
JT n=0 2n+1
4 =(Cos2n+1 o Sin2n+1 o
+7z2n—o(w (xo +ct+%a12 )Sd] (],],n)—w (xo +ct+%a12 )Sdz(],],n)]‘
ZICWW) S (k, k, m)_w S, (k, k, m)j
m= 2m+1 2m+1
6= e, 15,0+ SEPL (g ko
JT m=0 2m+1
1 = Sil2m+1)my, 1 = Co{2n+1)r L .
— SRS, (s 7).k ey )+ — ST 2, +ct+1 al ), (k,K)S,,(j, )
1 = Sin2n+1)z .
- ’E)’(znﬂ)(xo e+, atz)Saz(k, k)ng(j,j,}’l) (71)
Cod2n+1)r .. Sin2n+1 ..
7;2 H(oinnﬂ) (x0+ct+% atz)Sgl(],J,n)—W(xo +et+1 atz)ng(j,j,l’l))'
» [ Cod2m+1)ny
Zﬂ(j()oSd(k,k,m) ws (k k, m)J
m— 2m+1 2m+1
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and
as@w&$%UA%wn+zaﬂm“Ww< 15,k ko)
4 T m=0 2m+1

g Sinam g o Gom) e L CORIEVE (L af)s () (k)

7T m=0 2m+1 ¢ =0 2n+1

R M(xo +ct+%at2 dz(j,j,n)Saz(k,k)

JT m=0 2n+1
. )—M(xo +C[+%at2)Sd2(j,j,n)j'

ﬂ'zrt: 2n+1 (x0+6t+7at d](j’jan o+l
Cos(2m+ 1)y, Sin(2m+ 1) {1 N
TR0 (ke kym) ———————0 S (k k, s G)S(kk
Zo[ 2m+1 ok m) = 2m+1 2l m) tay 5 (727)S (k. )

Ly Colometmy o (o pomy- L g S DD e
T m=0 2m 1 JT m=0 2m+1

1 = Cos(2n+1)x 1 = Sin(2n+1)x
+;n§) osini:—l) (xo+ct+%atz)Sa3(k,k)Sg](]]n) ”2%( +ct+%a12).
4 = Cos(2n+1
S5k, 6)S 5 (j, o)+ = ZW[W(% ct+1al)s,(j,jn)
2n) h fam 1) (2 1) 7
Sin(2n+1)7 Lo .. Cos(2m+1)ny, Sin(2m+1)ny,
St b ik 1 Z TS (k& k,k
2n+1 (x°+Ct+2at )S*"Z(J’J’")jmzo( 2m+1 Sk o)~ 2m+1 Sal m))}

1 g MSCI(k,q,m)Sbl(p’j)

1
Ga(p,q,m,n,t) 4Sb1(p’ )SaZ(k q)+;mz‘lo 2m+1

LSl ¢ s (et $CORIDT s (oS (b a)

om0 2m+1 @ T 2n+1 73)
_i iw(xo +ct+%at2)Sez(p,j,n)Saz(k,q)
T n=0 2n+1

4 =(Cos(2n+1)x . Sin(2n+1 ]
7[2;‘;)((”2(}’;:-1)( Xo +Cl+%at2)Sd1(p,],n)—%(xo +Ct+éat2)Sd2(p,],n)]-

Cos(2m+1 izyo S (k. gum)- Sin(2m+1)my, S.(kq m)]

mg 2m+1 2m+1
1~ 1 & Cos(2m+1
Gilp.tomm)= (e ) 1 Fp. 0080 15slkea)e L £ PRIy s, (hgum)
T m=0 2 +1
1 2 Sin(2m+1)zy, , 1 2 Cos(2n+1)x ,
_;m:oTS‘”(p J)Sez(ka%m)Jr;EOT(xo +Cf+%afz)5az(kaQ)Sgl(l?,]a”) )
1 iw(xo+C,+%a,2)ga2(k’q)5g2(p, )
T m=0 2n+
4 Cos(2n +1 . Sin(2n +1 .
+”nzo(W(xo“fﬂatz)sgl(pdan)—W(xo+cf+iaf2)5gz(p,15n)j-

= ((Cos(2m + 1)y, Sin(2m +1)zy, j
Z[ mel s g.m)- mel 2 m)

m=0\
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1 = Cos(2m+1 ,
Gc(p,q,m,n,t):(ﬁat)z{ S (p.)S.(k.q)+ — ZO%S (p.)S.(k,q.m)

L g Sinlm g (s (egm)+ L5 CSRIEVT s (5 )Sa(g)
7T m=0 2m+1 =0 2n+1
—lff(p,q,t)w(cht%mz 12(p,.1)S 5 (k.q)
2n+1
4 =(Cos(2n+1 2 . Sin(2n +1 .
?g(%(xo+Ct+%at.)§d1(P,]a")_In(++l)ﬂ(xu+Ct+%at2)sdz(17,],n)j'
[ oot (rgm) - SE I g af 5,01 00)
o 2m+1 2m+1
1 = Cos(2 1 1 = Sin(2 1
Ly Cosllmelmg (g (kgm)-L 5 SR g () hgm)
T o 2m+1 7T m=0 2m+1
l iw(xo +ct +%a12 aS(k,q)Sgl(p,j,n)—l iw(xo +ct +%at2)S”3(k,q)ng(p,j,n)
a0 2n+1 ma=0  2n+1
+— 4 i(w(xu +ct+%atz)Sgl(p,j,n)—7Sin(2n+l)ﬂ (xu +ct+%atz)5'g2(p,j,n))~
p =i 2n 2n+1 (75)
Z(MS (k.g.m)- SnCm+ D o (k,q,m))}
0 2m 2m+1

Going through similar argument as in the previous section, we obtain the first approximation to the
homogeneous system when the effect of the mass of the partially distributed load is considered as

Pik) = Dyge” UM s, -] o
where D, ,and @, = are constants.

7( ¢ - ¢ = Cos (2m + 1)7zy0 o
H\J, k, =—S IS \k,k )+ — —_— LIS \k,k,
1(J m) 5 a3(j ]) a2( )"'””EO om 1 a3(j J) Ll( m) a7

e Sm@melmy e e m)

T m=0 2m +1

(78)

s a2 111y Bt ] -

O omr

is called the modified natural frequency representing the frequency of the free system due to the presence of
moving partially distributed mass and

7 (s Cos (2m +1
TGokem)= 25,0050 e)s 1§ €O long s ek m) o)

iiﬁﬂ@i%&%oﬂ&@km)
T m=0 2m +1
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= ? . > = Cos(2m+1 .
H3(Jﬂk9m)=c;‘.Sal(]ﬂ])SaZ(k;k)'Firmz_oWSaI(J’])S('Z(k’k’m) (81)

2 .
_c 3 Msm(ﬁ j)Scl(k,k,m)
T m=0 2m+1

— o ® Cos(2m+l)7zy .
H,(jk,m)=2s S (k,k)+ Ly 20T ) g s (k, k
(k,m) . (s 7)S, (k. )+MZ:0 Ey— (s 7)S., (k. ke,m) )

Ly Msag(j,j)scz(k,k,m)
T m=0 2m +1

To solve the non-homogeneous equation (69) the differential operator which act on 17( J.k, t) and 17( P9, t)

is replaced by equivalent free operator defined by the modified frequency 8,,,, ,i.¢

e 2 (. _ [ . v’ij( 1 z)
W Guka) + 80V (Gukat) = 1y, L L g0, (. )+ Cos—=\xy + et +yar
. (83)

A, A, A
—AjSin—‘/(xO +ct+%at2)—BjC0shL—‘/(x0 +ct+%at2>—CjSinL—j(x0 +ct+;at2):|
X X X

Evidently, equation (83) is analogous to (65). Thus using the same arguments as in the previous sections,
solution to equation (83) can be obtained as
— 1 el L,g
V(x’ Y, t) = Z Z < > {Slné‘MAM t[PIBS(dIZ + let)+ P14C(d12 + dlot)
P, (X)p (¥) iste=t Sy,
+ PIIS(dll + let)+ I)IZC(dll + let)+ PZIC(dll + let)_ PZZ S(dll + let)+ P23C(d12 + dlot)
_P24S(d12 + let)_ leerf(dn + dzot)_ Qnerﬁ(dn + dzot)_ Q13e’f(d22 + dzot)
- Q14erﬁ(d22 + dzot)+ Qzlerf(dzl + dzot)_ szerﬁ(dn + dzot)+ Oyerfld,, + dz()t

— O, erfi(d,y +dqyt)+ o [Sin(/lj ~Syu 1) = Sin(A; + 8, 1)+ 4, (Cos (A; = Cup 1)

MM
—Cos(A; + 0, t))—iBj (Sinh(/lj + Oy t) = Sinh(A; —id t))
+P12‘S(d11 +d10t)+P13C(d12 +d1ot)_P14S(d1z +d10t) +P21S(d11 +d10t)+P22C(d11 +d1ot)
_PZSS(dIZ + dlot)_P24C(d12 + dlot)+ iQnerﬁ(dn + dzot)_iQuerf(dn + dzot)
—iQ13e‘lﬁ(d22 +d20t)+in4erf(d22 +d20t)+iQ21erf(d21 +dzot)+inzerﬁ(dz1 +d20t)
—iC,(Cosh (A, +i8 1) = Cosh (A, =18, 1))] = F5 |- Cos 8yt [- P, C(d,, +d 1)
L [Cos (4, 8y 1)+ COS(A, + 8y 1)

- inze’ff(dzz + dzot)_ iQ24e'ﬁ(dzz + dzot)+ 28

MMt
—4,(Sin(A, = 8, 1)+ Sin(A, + 8,,0)) = B, (Cosh (2, +i8,,1) + Cosh (A, = 8, 1))
—C,(Sinh A, +i8,, 1) + Sinh (A, =8, O]+ F 1, (v0)-

(84)

ljx

A.x
+C Cosh —.
L / L

A.x A.x
Sin 2 +4,Cos ?+BjSinh

Equation (84) represents the transverse displacement response to travelling partially masses moving at non-
uniform velocities of an isotropic rectangular plate resting on Vlasov foundation for various end conditions.
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4 Illustrative Examples

In this section, practical examples of classical boundary conditions are selected to illustrate the analyses
presented in this paper.

4.1 Rectangular Plate Clamped At Edges x=0x=L with Simple Supports at

y=0,y=L,

In this example, the rectangular plate is clamped at edges x = 0, x = L _with simple supports at edges

y=0,y=0L,. The boundary conditions at such opposite edges are

V(0,y,0)=0, V(Lyx,p,1)=0 and  V(x,0,1) =0, Vix,Ly,0)=0 (85)
2 2 2 o™ (x,L,, t
o V(O,zy,t) _o, 0 V(sz,y,t) 0 and © V(x;O,t) _o, (x,2 ey (86)
Ox Ox oy oy

and hence for normal modes, one obtains

V.(0)=0, V,(L)=0 and V. (0)=0, V,(L,)=0 (87)

0%V (0 o2V (L 2 %V, (L,

712( Voo, 2D (2 Do aa TLO L) o, 25 (2 2 (88)
ox Ox Oy oy

Using the boundary conditions (85) and (86) in (7) and (8), the following values of the constants and
frequency equations are obtained for the clamped edges

o Sinh /l_f—Sin/lj - _ Sinh ﬂp—Sinﬂp (89)
/ Cosh A, - Cos 4, ’ Cosh A, - Cos 4,

B.=-1 = B and C. . =-4. = C =-4 (90)

J P J J P P

The frequency equation of the clamped edges is given by

Cosh/tjCos/ij -1=0 (91)
such that
A, = 4.73004 , A, =7.85320 , A, =10.99561 92)

/leLy 2 2 2, 1 1 2 g in’
V)=l 4] =B+ C +I[2Cj—ZAij—B/Cj—E(l—Aj)Slnxlj-i-ZAjSm A
J

J

+(Bj ¥ Cf)SinhﬂjCoshﬂj +2(B, - 4,C, )Cosh A, Sinh A, +2(~ B, + 4,C, Sinh 2, Cosh 1, ©3)

+2(C, - 4,B,)SinhA,SinA, +2(~C, + 4,B,)Cosh A,Cos A, + B,C,Cosh2, ]}
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V7, is obtained by replacing subscripts j by p in equation (95). For the simple edges, it is readily shown that
4,(0)=0, V. (L)=0 and V,(0)=0, Vi(L,)=0 94

The corresponding frequency equation yields

Ao=kn = A, =qn 95)
And

L, L,
=55, v, =52 (96)

Thus, the general solutions of the associated moving partially distributed force and moving partially
distributed mass problems of the simple-clamped rectangular plate are obtained by substituting the above
results in (89) to (96) into equations (68) and (84).

4.2 Rectangular Plate Clamped At All Edges

For the isotropic rectangular plate clamped at all edges, both deflection and the slope vanish at such ends.
Thus, the following boundary conditions pertains

V(0,y,t)=0, V(L ,y,t)=0 and V(x,0,t)=0, Vix,L,,0)=0 97)
oV(x,L, t
oV (0, y,t) _o, oV(L,,y,t) 0 and oV (x,0,t) _o, (x,L,, 1) _0 ©8)
ox ox oy oy
and hence for the normal modes, we have
V,(0)=0, V,(L,)=0 and V,(0)=0, Vi(L,)=0 (99)
oV.(0 oV.(L oV, (L
O o T oy KO, T, (100)
ox Ox Oy Oy

Using the boundary conditions (97) to (100) in equations (7) and (8) one obtains the following values of the
constants for the clamped edges at x =0, x =L,

SinhA. —SinA. SinhA_ —SinA
A =— ! =4 =- L L (101)
/ CoshA; —CosA, ’ CoshA,—CosA,
Bj=—1 = Bp =-1, C‘/=—Aj = Cp=—Ap (102)

The frequency equation of the clamped edges is given by

CoshA;CosA, —1=0 (103)
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such that
A =1.875 A, =4.694, A, =7.855 (104)
Vj is defined by (93) and Vp is obtained by replacing subscripts j by p

Similarly, for the clamped edges )y = 0, y= Ly the same process is followed to obtain

j -Si SinhA, —SinA
d = SinhA, — Sin, g = InhA, —dina, (105)
CoshA, —Cos/, " CoshA,—CosA,

The frequency equation of the clamped edges is given by

CoshA,CosA, —1=0 (106)

such that

A =1875, 1, =4.694, A, =7.855 (107)

V, and Vq are obtained by replacing subscripts j with kand ¢ in equation (93) respectively. Thus, the

general solutions of the associated moving partially distributed force and moving partially distributed mass
problems of the clamped-clamped rectangular plate are obtained by substituting the above results in (101) to
(107) into equations (68) and (84).

5 Comments on Closed form Solutions

At this juncture, in an undamped system such as this, it is pertinent to establish conditions under which
resonance occurs. Resonance takes place when the motion of the vibrating structure becomes unbounded.
That is, when the vibrations become intensive and can cause catastrophic failure in improperly constructed
structures including bridges, buildings and airplanes. The resonance conditions for the boundary conditions
are now established and It is evident from equation (68) that the isotropic rectangular plate resting on a
Pasternak elastic foundation and traversed by partially distributed forces moving with variable velocities
reaches a state of resonance whenever

je je
Oomr = T Oomr =

A.v Ay 2at,
+— (108)
L. L

X X X

while equation (84) shows that the same plate under the action of moving mass experiences a state of
resonance whenever

Sy = Oy = ——
MM I MM I I

X X X

A.v Av 2at,,
L0 (109)

From the expression (79),
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v i, (j.km)- [, isksm) + 7, (s k,m)]

Oy = Tour {1 = = (110)
OMF
which implies
ﬂjvc
L
Comr = 7" — (111)
[H3(j,k,m)+H4(j,k,m)]

2

1_’77M I?Z(j,k,m)—
2 O omr

It is therefore evident from (109) and (111) that for the same frequency, the critical velocity for the system
consisting of isotropic rectangular plate resting on a Pasternak foundation and traversed by partially
distributed forces moving at non-uniform velocities is greater than that of the moving mass problem. Thus,
for the same natural frequency of an isotropic rectangular plate, resonance is reached earlier in moving mass
system than in moving force system.

6 Numerical Results and Discussion

In this section, results are presented and discussed for an isotropic rectangular plate of lengths,
E=2.109x10° N /m? a moment of inertia / =2.87698x10>m*, the plate thickness 2 =0.35, and the
Poisson ratios ¥ = 0.55 is considered. The velocity of the travelling partially distributed load is30m /s, the
value of bending rigidity D is 10000, mass per unit length g1 =2758.291kg / m . Furthermore, the values of

foundation stiffness K is varied between ON /m* and 400000N / m? , the values of axial forces N and N )
varied between ON and2.0x10% NV, the shear modulus G is varied between ON / mand3.0x10' N/ m.

Fig. 6.1 shows the deflection profile of a clamped-clamped isotropic rectangular plate under the action of
partially distributed forces moving at variable velocity for various values of foundation stiffness K and
fixed values of axial force N, =20000, shear modulus G =10000 and rotatory inertia correction factor

R® =0.5is displayed. The figure shows that as the value of K increases, the transverse displacement of the
isotropic rectangular plate decreases. Similar results are obtained when the clamped-clamped plate is
subjected to partially distributed masses as shown in Fig. 6.5. For various travelling time t, the transverse
displacements of the plate for various values of axial force N, and fixed values of foundation stiffness

K =40000, shear modulus G =10000 and rotatory inertia correction factor R’ = 0.5 are shown in Fig.
6.2. It is observed that higher values of axial force N, reduce the transverse displacement of the plate. The
same behaviour characterises the deflection profile of the clamped-clamped plate under the action of
partially distributed masses moving at variable velocity for various values of axial force N, as shown in Fig.
6.6. Also, Fig. 6.3 displays the response amplitudes of the clamped-clamped isotropic rectangular plate
respectively to partially distributed forces travelling at variable velocity for various values of shear modulus
G and fixed values of foundation stiffness K =40000 , axial force N, =20000 and rotatory inertia

correction factor R® =0.5. It is seen from the figure that as the value of the shear modulus increases, the
response amplitude of the simply supported isotropic rectangular plate under the action of partially
distributed forces travelling at variable velocity decreases. Similar results are obtained when the clamped-
clamped isotropic rectangular plate is subjected to a partially distributed masses travelling at variable
velocity as shown in Fig. 6.7. In Fig. 6.4 the deflection profile of clamped-clamped isotropic rectangular
plate under the action of partially distributed forces is displayed. It is clearly shown that as we increase the

values of a rotatory inertia correction factor R for fixed values of foundation stiffness K , axial force N
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and shear modulus G the deflection of the isotropic plate decreases. Also, for the same clamped-clamped
plate traversed by non-uniform partially distributed masses in Fig. 6.8 depicts that as the values of rotatory
inertia R increase the deflection of the plate reduces for fixed values of foundation stiffness K = 40000,
axial force N, =20000 and shear modulus G =10000 .

0.14 -
0.12 -
_____ K=0 -
0.1 4 — K=40000
——— K=400000
0.08 4 | K=4000000 ;
3
= 0.06 -| /
£ N h
% 0.04 - i
2 0.02 - S /
8 N, !
£ 0 == KEme e e
E ) 0.5 1N N1 / N 35 . 5
-0.02 ! . ’
-0.04 -
-0.06 - Travelling time (t)
-0.08

Fig. 6.1. Transverse displacement of a clamped-clamped rectangular plate under partially distributed
forces for various values of K and N, = 20000, G =10000, RY=05.

0.15 4
----- Nx=0 .
Nx=20000
0.1 - ——— Nx=200000
......... Nx=2000000
€ o.0s
_5. (0] ]
B 4.5
[}
k]
& -0.05
Travelling time (t)m
-0.1 -
-0.15 -

Fig. 6.2. Deflection profile of a clamped-clamped isotropic rectangular plate under partially
distributed forces for various values of N and K = 40000, G =10000 R® =0.5.
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0.3

0.2 -

=3000000
~~~~~~~~~ G=300000000

-0.1 o

Plate Displacement (m)

-0.2 A

-0.3 o

0.4 -

Travelling time (t)m

4.5

Fig. 6.3. Transverse displacement of a clamped-clamped isotropic rectangular plate under partially

distributed forces for various values of G and K = 40000, N, = 20000, R =05.
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Travelling time (t)m
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Fig. 6.4. Response amplitude of a clamped-clamped isotropic rectangular plate under partially

distributed forces for various values of R’ and fixed values of K = 40000, N, =20000 and G =10000.

Plate Displacement (m)
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-0.015
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Travelling time (t)s
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Fig. 6.5. Displacement response of a clamped-clamped isotropic rectangular plate under partially

distributed masses for various values of foundation stiffness K and ~, =20000,G =10000, R =05.
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-0.003
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Fig. 6.6. Deflection profile of a clamped-clamped isotropic rectangular plate under partially
distributed masses for various values of N and K = 40000, G =10000 , R =0.5.
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Fig. 6.7. Transverse displacement of a clamped-clamped isotropic rectangular plate under partially
distributed for various values of G and K = 40000, N = 20000, R°=0.5.
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Fig. 6.8. Response amplitude of a clamped-clamped isotropic rectangular plate under partially
distributed masses for various values of R” and K = 40000, N, =20000, G=10000.
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Moving Force

----- Moving Mass
0 e

-0.02 -

-0.04 -

Plate Displacement (m)
o ~
(9]
En
w
[§,]
s
>
(9]

-0.06 - Travelling time (t)s

-0.08 -

-0.1 4

-0.12 -

Fig. 6.9. Comparison of the displacement response of moving force and moving mass cases for a non-
uniform clamped-clamped plate for fixed values of X =400000, N, =20000 G =100000 and

R =05

Fig. 6.9 displays the comparison of the transverse displacement response of moving force and moving mass
cases of the clamped-clamped isotropic rectangular plate traversed by a moving load travelling at variable

velocity for fixed values of K =400000 , N, =200000, G =100000 and R=0.5.In Fig. 6.10, the

deflection profile of a simple-clamped isotropic rectangular plate under the action of partially distributed
forces moving at variable velocity for various values of foundation stiffness K and for fixed values of axial

force N, =20000 , shear modulus G =10000 and rotatory inertia correction factor R°=0.5 is
displayed. The figure shows that as K increases, the deflection of the plate decreases.

0.6
_____ K=0
04 K=400000
———-K=4000000
......... K=40000000
0.2
E
= = //—\\
E o SR SETIC |
3 s ) 1s 1 5 4.5
9
z
-0.2
Travelling time (t)s
-0.4 -
-0.6 -

Fig. 6.10. Transverse displacement of a simple-clamped isotropic rectangular plate under partially
distributed forces for various values of K and N, = 20000, G = 10000, R =05.
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Fig. 6.11. Deflection profile of a simple-clamped isotropic rectangular plate under partially distributed
for various values of axial force and X = 40000, G = 10000, R =0.5.
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Fig. 6.12. Transverse displacement of a simple-clamped isotropic rectangular plate forces under
partially distributed forces for various values of G and K = 40000, N = 20000, R°=05.

Similar results are obtained when the simple-clamped isotropic rectangular plate is subjected to a partially
distributed masses travelling at variable velocity as shown in Fig. 6.14. For various travelling time t, the
deflection profiles of the plate for various values of axial force N, and for fixed values of foundation

stiffness K=40000, shear modulus G=10000 and rotatory inertia correction factor R® =0.5 are shown in
Fig. 6.11. It is observed that higher values of axial force N, reduce the deflection profile of the plate. The
same behaviour characterizes the deflection profile of the simple-clamped isotropic rectangular plate under
the action of partially distributed masses moving at variable velocity for various values of axial force N, as

shown in Fig. 6.15. Also, Fig. 6.12 displays the displacement response of the simple-clamped isotropic
rectangular plate to partially distributed forces travelling at variable velocity for various values of shear
modulus G and for fixed values of foundation stiffness K=40000, axial force N, =20000 and rotatory
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inertia correction factor R® =0.5. The same results are obtained when the simple-clamped isotropic
rectangular plate is subjected to a partially distributed masses travelling at variable velocity as shown in Fig.
6.16. The transverse displacement response of a simple-clamped isotropic rectangular plate under the action
of partially distributed forces moving at variable velocity for various values of rotatory inertia correction
factor R® and fixed values of foundation stiffness K=40000, axial force N, =20000and shear modulus

G=10000 is displayed in Fig. 6.13. The figure shows that as R° increases, the dynamic deflection of the
plate decreases. Similar results are obtained when the simple-clamped isotropic rectangular plate is subjected
to a partially distributed masses travelling at variable velocity as shown in Fig 6.17. Finally, Fig. 6.18
depicts the comparison of the transverse displacement response of moving force and moving a mass of a
simple-clamped isotropic rectangular plate traversed by a moving load travelling at variable velocity for

fixed values of K=400000, N, =200000, G=100000 and R°=0.5
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Fig. 6.13. Response amplitude of a simple-clamped isotropic rectangular plate under partially
distributed forces for various values of R’ and X = 40000, N . = 20000, G=10000.
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Fig. 6.14. Displacement response of a simple-clamped isotropic rectangular plate under partially
distributed masses for various values of K and N, =20000, G =10000_ R°=05.
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Fig. 6.15. Deflection profile of a simple-clamped isotropic rectangular plate under partially distributed
masses for various values of N and K = 40000, G =10000, R =0.5.
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Fig. 6.17. Response amplitude of a simple-clamped isotropic rectangular plate under partially
distributed masses for various values ofR® and K = 40000, N . = 20000, G =10000.
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Fig. 6.18. Comparison of the displacement response of moving force and moving mass cases for
simple-clamped rectangular plate for fixed values of X = 400000, N, =200000, G =100000 and

R =05
7 Conclusion

In this paper, the dynamic response of a rectangular plate having arbitrary supports at both ends is presented.
The solution technique suitable for all variants of classical boundary conditions involves using the
generalised two-dimensional integral transform to reduce the fourth order partial differential equation
governing the vibration of the plate to a second ordinary differential equation which is then treated with the
modified asymptotic method of Struble. The closed form solutions obtained are analysed and numerical
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analyses in plotted curves were presented. The analyses carried out show that as the values of foundation

stiffness K , axial force NV , shear modulus G and rotatory inertia correction R’ increase, the response
amplitude of the plate decrease for all illustrative examples considered. It is shown further from the results
that, for the same natural frequency, the critical speed for the for the system traversed by partially distributed
moving masses at varying velocities is greater than that of the partially distributed moving force problem for
both clamped-clamped and simple-clamped end conditions. Hence, resonance is reached in moving force
problem. It is seen that for both end conditions under consideration, the response amplitude of the partially
distributed moving force system is higher than that of the partially distributed moving mass system for fixed
values of the structural parameters. Thus, increase in the values rotatory inertial correction factor, foundation
stiffness and shear modulus reduce the risk of resonance in a vibrating system.
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