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Abstract 
 

This study considered the effects of outliers on the identification of heteroscedasticity in the daily closing 
share price returns series of Diamond Bank, Fidelity Bank and Skye bank using correlogram, Ljung-Box 
test and Lagrange Multiplier test. The data were obtained from Nigerian Stock Exchange from January 3, 
2006, to November 24, 2016, and comprises 2690 observations. About Seventeen outliers were detected 
in the return series of Diamond bank, sixteen outliers identified in the return series of Fidelity bank and 
twenty-six outliers found in Skye bank, and their effects were removed to achieve an outlier adjusted 
series for respective banks under study. Meanwhile, heteroscedasticity was found to exist in the two (the 
outlier contaminated and the outlier-adjusted) series. However, the results of our findings indicated that 
outliers could hide significant heteroscedasticity in correlogram, minimize the power of Ljung-Box test 
and amplify the power of Lagrange Multiplier test. The implication is that failure to account for outliers 
would result in impaired or spurious heteroscedasticity detection in discrete-time series. Thus, the 
strength of this study is in highlighting the undesirable effects of outliers on heteroscedasticity detection. 
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1 Introduction 
 
Heteroscedasticity means changing variance. It is a phenomenon that occurs when the assumption of 
constant variance is violated. The existence of heteroscedasticity commonly called the ARCH effect is a 
very common occurrence in time series data especially financial time series data. A major setback to linear 
stationary models when applying to financial data (returns series) is their failure to account for changing 
variance. Neglecting the presence of heteroscedasticity in linear models results in inefficient ordinary least 
squares estimates of ARIMA parameters though still consistent and asymptotically normally distributed, 
their variance-covariance matrix is no longer the usual one. Thus, making the t-statistics invalid and cannot 
be used to examine the significance of the individual explanatory variables in the model [1,2]. Also, over-
parameterisation of an ARIMA model and low statistical power are identified as part of the consequences for 
neglecting heteroscedasticity. In addition, neglecting heteroscedasticity can lead to spurious nonlinearity in 
the conditional mean and difficulty in computing the confidence interval for forecasts [3,4,1,2]. 

 
On the other hand, another very common attribute in time series data is the presence of outliers. Outliers in 
homoscedastic model make the model heteroscedastic, distorting the diagnostic tools for heteroscedasticity 
such that it may not be correctly identified. Similarly, [5] further affirmed and maintained that outliers affect 
the identification of conditional heteroscedasticity and the estimation of GARCH models. Also, it is evident 
according to [6] that outliers have a great impact on the existing heteroscedasticity tests and the estimators of 
the heteroscedastic models. Such impact of outliers on the diagnostic tools for heteroscedasticity is well 
defined in [7]. They showed that both the asymptotic size and power properties of Lagrange Multiplier (LM) 
test for ARCH/GARCH are adversely affected by outliers, particularly, additive outliers. Furthermore, [8] 
found that the order of identification, t-statistics and corresponding p-values of the estimates of GARCH 
parameters are affected by outliers in an unexpected manner. Therefore, it could be argued that it is gainful 
to take into consideration the presence of outliers whenever heteroscedasticity is modeled. 

 
The fact that previous studies in Nigeria have failed to consider the presence of outliers while modelling 
heteroscedasticity in stock returns has provided a novel ground for this study. For instance [9] investigated 
the time series behaviours of daily stock returns of four firms listed in the Nigerian Stock Market from  
January 2, 2002 to December 31,  2006 using three different models of heteroscedastic process, namely; 
GARCH(1,1), EGARCH(1, 1) and GJR-GARCH(1, 1) models, respectively. The four firms whose share 
prices were used in the analysis were United Bank for Africa, Unilever, Guinness and Mobil. All return 
series exhibit leverage effect, leptokurtosis, volatility clustering and negative skewness which are common 
to most economic financial time series. The estimated results revealed that the GJR-GARCH (1, 1) gives a 
better fit to the data and are found to be superior both in-sample and out-sample forecasts evaluation.  

 
[10] examined the response of volatility to negative and positive news using daily closing prices of the 
Nigerian Stock Exchange (NSE). By applying EGARCH (1, 1) and GJR-GARCH (1, 1) models to NSE 
daily stock return series from January 2, 1996 to December 30, 2011. They found strong evidence supporting 
asymmetric effects in the NSE stock returns but with the absence of leverage effect. Specifically, the 
estimates from EGARCH model showed positive and significant asymmetric volatility coefficient. In the 
same way, results of the GJR-GARCH showed negative and significant asymmetric volatility coefficient, 
also, supporting the existence of positive asymmetric volatility. Overall results from this study provided 
support for positive news producing higher volatility in the immediate future than negative news of the same 
magnitude in Nigeria.  

 
[11] studied the modeling and forecasting of daily returns volatility of Nigerian Banks Stocks using data 
from January 4, 2005 to August 31, 2012. Three symmetric models ARCH (1), ARCH (2) and GARCH (1, 
1) and two asymmetric models EGARCH (1, 1) and TARCH (1, 1) were used in capturing the volatility 
pattern of the banks stocks. The findings of the study revealed that the return series were stationary but not 
normally distributed with the presence of ARCH effect. Furthermore, the results of post-estimation 



 
 
 

Akpan et al.; ARJOM, 10(1): 1-20, 2018; Article no.ARJOM.42517 
 
 
 

3 
 
 

evaluation revealed that asymmetric conditional heteroscedastic models are more suitable for                   
modeling daily returns volatility of Nigerian Banks stocks compared with symmetric heteroscedastic  
models. 
 
[12] looked at a possible combination of both ARMA and ARCH-type models to form a single model such 
as ARMA-ARCH that will completely model the linear and non-linear features of financial data. Daily 
closing share prices of First Bank of Nigeria plc from January 4, 2000 to December 31, 2013 were 
considered. The study provided evidence to show that ARMA (2, 2) model was adequate in modeling the 
linear dependence in the returns while ARCH (1) model was adequate in modeling the changing conditional 
variance in the returns. Hence, ARMA (2, 2)-ARCH (1) model completely modeled the returns series of 
First Bank of Nigeria. 
 
[13] detected and modeled the asymmetric GARCH effects in a discrete-time series by exploring the share 
price returns of Zenith bank plc obtained from the Nigerian Stock Exchange from January 4, 2006 to May 
26, 2015. The study applied sign and size test to identify the asymmetric GARCH effects and modeled by 
EGARCH and TGARCH respectively with respect to normal distribution. The findings of the study revealed 
that the asymmetric effect was adequately captured modeled by EGARCH (0, 1) and TGARCH (0, 1) 
models. Yet they did not take into account the presence of outliers.  
 
Specifically, the aim of this study is to identify the effects of outliers on the tools (correlogram,                      
Ljung-Box test and Lagrange Multiplier test) used for heteroscedasticity detection. Moreover, the            
remaining part of this work is organized as follows; section 2 handles the methodology to be explored then 
followed by analysis and discussion of results in section 3 while the conclusion of overall results is treated in 
section 4.  
 

2 Materials and Methods  
 
2.1 Return 
 
The return series �� can be obtained given that �� is the price of a unit share at time, t and ����	 is the share 
price at time t− 1. 
     

�� = ∇���� 	= (1 − �)���� 		= ��	�� 	− ��	����.                                                                             (1) 
 
The ��  in equation (1) is regarded as a transformed series of the share price, �� meant to attain stationarity, 
that is, both mean and variance of the series are stable [14]. The letter � is the backshift operator. 
 

2.2 Autoregressive Integrated Moving Average (ARIMA) model 
 
 [15] considered the extension of ARMA model to deal with homogenous non-stationary time series in 
which ��,	itself is non-stationary but its ��� difference is a stationary ARMA model. Denoting the ���  
difference of ��  by   
 

�(�)= �(�)∇��� = �(�)��,                                (2) 
 
where�(�) is the nonstationary autoregressive operator such that d of the roots of �(�)	= 0 are unity and 
the remainder lie outside the unit circle. �(�)	is a stationary autoregressive operator. 
 

2.3 Tools for identification of heteroscedasticity 
 
Correlogram: If at least one lag term in both ACF and PACF of squared residual series is found to be 
statistically significant, then the presence of ARCH effect is confirmed [13,16]. 
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Ljung - Box Test is given as 
 

Q(m) = T(T + 2) 

�
∑

�= 1

���
���

�

���
	,                                                                                                              (3)     

 
where T is the sample size, m is a properly chosen number of autocorrelations used in the test,  ���

�(��
�)is the 

lag-	� ACF of ��
�  [17]. If the entertained linear model is adequate, Q(m) is asymptotically a Chi-squared 

random variable with m – p – q degrees of freedom [18]. 
 
Lagrange Multiplier Test: Another approach for testing the ARCH/GARCH effect (otherwise called 
heteroscedasticity is the changing conditional variance) is to apply the Lagrange Multiplier (LM) test of 
ARCH(q) against the hypothesis of no ARCH effects to {��

� } series. The LM test is carried out by 
computing, �� = T�� in the regression of ��

� on a constant and q lagged values. T is the sample size and �� 
is the coefficient of determination. Under the null hypothesis of no ARCH effects, the statistic has a Chi-
square distribution with q degrees of freedom. If the LM test statistic is larger than the critical value, then, 
there is evidence of the presence of ARCH effect [19]. 

 
Outliers in Time Series: An outlier is an observation that diverges from an overall pattern on a sample. 
Generally, a time series might contain several, say k outliers of different types and we have the following 
general outlier model;  
 

�� = ∑ ��
�
��� ��(B)��

(�)
+ �� ,                                                                                                             (4) 

 

where �� = (�(�))⁄ (�(�))	�� , �� (B) =  1 for an AO, and �� (B) = 		
�(�)

�(�)
 for an IO at t = �� , �� (B) =

(1	–	�)��  for a LS and  �� (B) = (1	– �	�)��  for a TC. For more details on the types of outliers and 

estimation of the outliers effects see [20,21,15,22,23,24]. 
 
Moreover, in financial time series, the residual series, �� is assumed to be uncorrelated with its own past, so 
additive, innovative, temporary change and level shift outliers coincide, and where both the mean and 
variance equations evolves together, we have  
 

�� − �� = ��� + ���
(�)

,                                                                                                                       (5) 

 
��� = 	����,                                                                                                                                          (6)  

                                            
��

� = 	�� +	�������
� + ������

� ,                                                                                                           (7) 

 
where ��� is the outliers contaminated residuals. 

 

3 Results and Discussion 
 
This study considers the daily closing share prices of  three major banks in Nigeria; Diamond bank, Fidelity 
bank and Skye bank and were obtained from the Nigerian Stock Exchange through the data range from 
January 3, 2006 to November 24, 2016 and comprises 2690 observations. 

 
3.1 Time Series Plot Interpretation 
 
Figs. 1 - 3 represent the share price series for the three banks. It could be observed that the share prices of all 
the banks do not fluctuate around a common mean. Thus clearly indicate the presence of a stochastic trend in 
the share prices, implying non-stationarity.  
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Fig. 1. Share price series of diamond bank 
 

 
 

Fig. 2. Share price series of fidelity bank 
 

 
 

Fig. 3. Share price series of Skye bank 
 
Since the share price series is found to be non-stationary, the first difference of the natural logarithm of share 
price series is taken to obtain a stationary (returns) series. The inclusion of the log transformation is to 
stabilize the variance. Figs. 4-6 show that the returns series appear to be stationary and they suggest that 
volatility clustering is quite evident in the different series.  
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Fig. 4. Return series of diamond bank 
 

 
 

Fig. 5. Return series of fidelity bank 
 

 
 

Fig. 6. Return series of Skye bank 
 

3.2 Diamond Bank 
 
From Figs. 7 and 8, both ACF and PACF indicate that mixed model could be entertained. The following 
models, ARIMA (1, 1, 1), ARIMA (1, 1, 2) and ARIMA (2, 1, 1) are entertained tentatively. 
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Fig. 7. ACF of return series of diamond bank 
 

 
 

Fig. 8.  PACF of return series of diamond bank 
 
From Table 1, ARIMA (2, 1, 1) model is selected based on the ground of significance of the parameters and 
minimum AIC.  
 

Table 1. ARIMA Models for Return Series of Diamond Bank 
 

Model Parameter Akaike Information 
Criteria (AIC) �� �� �� �� 

ARIMA(1, 1, 1) 0.3349∗∗∗  −0.0957  − 11357.69 
ARIMA(1, 1, 2) − 0.0476  0.2858 0.1093∗ − 11360.79 
ARIMA(2, 1, 1) − 0.5029∗∗∗ 0.2199∗∗∗ 0.7404∗∗∗  − 11360.86 

*** significance at 5% level ; * significance at 1% level 
 
Furthermore, Evidence from Ljung - Box Q-statistics shows that ARIMA (2, 1, 1) model is adequate at 5% 
level of significance given the Q-statistic at Lags 1, 4, 8 and 24, that is, Q(1) = 0.0084, Q(4) = 1.5075, Q(8) 
=6.3308 and Q(24) = 25.476  with corresponding (P = .93), (P = .83), (P = .61) and (P = .38), respectively. 

 
3.3 Identification heteroscedasticity in the return series of diamond bank 
 
From Figs. 9 and 10, it could be observed that heteroscedasticity exists in the residual series of ARIMA (2, 
1, 1) model since the lags 1, 2, 3, 15, 16, 20 of the ACF and Lags 1, 2, 3 and 15 of PACF are outside the 
significance bounds. 
 
Also, Heteroscedasticity is said to exist in the residual series  at lags 4, 8, 12, 16, 20 and 24   since the 
Portmanteau-Q statistics; Q(4) =  66.1, Q(8) =  85.9, Q(12) = 95.7, Q(16) =  133.9, Q(20) =  143.1 and Q(24) 
= 148.6 whose corresponding (P = 1.53e-13), (P = 3.11e-15), (P = 3.89e-15),(P = .00), (P = .00) and (P = 
.00)  are all less than 5% level of significance. 
 
Further evidence from Lagrange-Multiplier (LM) test statistics confirms that heteroscedasticity is present in 
residual series of ARIMA (2,1,1) model at lags 4, 8, 12, 16, 20 and 24 since the Lagrange Multiplier test 
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statistics; LM(4) =  2021, LM(8) =  992, LM(12) =  651, LM(16) =  472, LM(20) =  373 and LM(24) = 307 
whose corresponding  (P = .00), (P = .00), (P = .00), (P = .00), (P = .00) and (P = .00)  are all less than 5% 
level of significance. 
 

 
 

Fig. 9. ACF of squared residuals of ARIMA (2, 1, 1) model 
 

 
 

Fig. 10. PACF of squared residuals of ARIMA (2, 1, 1) model 
 

3.4 Identification of outliers in the residual series of ARIMA (2, 1, 1) model fitted to 
the return series of diamond bank 

  
Using the critical value, C = 4 and based on the condition n≥ 450, about seventeen (17) different outliers are 
identified to have contaminated the residual series of ARIMA (2, 1, 1) model; four (4) innovation outliers 
(IO), ten (10) additive outliers and three (3) temporary change. The outliers at a given time are indicated as  
follows:  IO (t = 99), IO (t = 642), IO (t = 1671), IO (t = 1791), AO (t = 1656), AO (t = 1723), AO (t = 
1739), AO (t = 1770), AO (t = 1843), AO (t = 2263), AO (t = 2281), AO (t = 2562), AO (t = 2626), TC (t = 
98), AO (t = 2559), TC (t = 1667) and TC (t = 2554). 

 
3.5 Building ARIMA (2, 1, 1) model for outlier adjusted return series of diamond 

bank 
 
Having identified and ascertained that the return series of Diamond bank is outliers contaminated, the 
outliers effects are removed from the series to produce a new series that is outliers free and we refer to such 
series as outlier adjusted series. Also, ARIMA (2, 1, 1) model is fitted to the outlier adjusted series with the 
parameters all significant at 5% level [Table 2] and is found to be adequate at 5% level of significance given 
the Q-statistics at Lags 1, 4, 8 and 24, that is, Q(1) = 0.0498, Q(4) = 2.7683, Q(8) =9.3022 and Q(24) 
=32.272 with corresponding (P = .82), (P = .60), (P = .32) and (P = .12). 

 
Table 2. ARIMA (2, 1, 1) model for outlier adjusted return series of diamond bank 

 

Model Parameter Akaike Information 
Criteria (AIC) �� �� �� 

ARIMA (2, 1, 1) − 0.5215∗∗∗ 0.2375∗∗∗ 0.7750∗∗∗ − 11622.05 
*** significance at 5% level 
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3.6 Identification of heteroscedasticity in the outlier adjusted return series of 
diamond bank 

 
Considering the ACF and PACF of the squared residual series of ARIMA (2, 1, 1) model fitted to the outlier 
adjusted return series of Diamond bank, from Figs. 11 and 12, it could be observed that heteroscedasticity 
exists in the residual series of ARIMA (2, 1, 1) model since some lags of ACF and PACF are outside the 
significance bounds  
 
Also, heteroscedasticity is said to exist in the residual series  at lags 4, 8, 12, 16, 20 and 24  since the 
Portmanteau-Q statistics; Q(4) = 205, Q(8) =  298, Q(12) = 353, Q(16) =  443, Q(20) =  496 and Q(24) = 
518 whose corresponding (P = .00), (P = .00), (P = .00), (P = .00), (P = .00) and (P = .00)  are all less than 
5% level of significance. 
 
Further evidence from Lagrange-Multiplier (LM) test statistics confirms the presence of heteroscedasticity at 
lags 4, 8, 12, 16, 20 and 24 since the Lagrange Multiplier test statistics; LM(4) = 608.2, LM(8) =  291.4, 
LM(12) =  187.9, LM(16) =  137.3, LM(20) =  107.4 and LM(24) = 88.8 with corresponding (P = .00), (P = 
.00), (P = .00), (P = .00), (P = 2.38e-14) and (P =1.14e-09)  are all less than 5% level of significance. 
 

 
 

Fig. 11. ACF of squared residuals of ARIMA (2, 1, 1) model fitted to outlier adjusted return series of 
diamond bank 

 

 
 

Fig. 12. PACF of squared residuals of ARIMA (2, 1, 1) model fitted to outlier adjusted return series of 
diamond bank 

 

3.7 Effects of outliers on heteroscedasticity identification tools in the return series of 
diamond bank 

 
Correlogram: Comparing the ACF and PACF of the squared residuals of ARIMA (2, 1, 1) model fitted the 
outlier contaminated return series of Diamond bank [Figs. 9 and 10] to the ACF and PACF of the squared 
residuals of ARIMA (2, 1, 1) model fitted the outlier adjusted return series of Diamond bank [Figs. 11 and 
12], it is obvious that the significant lags in both ACF and PACF of squared residuals of the ARIMA (2, 1, 
1) model fitted the outlier adjusted return series are increasing and more in number than those of the squared 
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residuals of ARIMA (2, 1, 1) model fitted the outlier contaminated return series. Hence, it could be deduced 
that the presence of outliers hides heterosceadsticity detection in ACF and PACF of return series of 
Diamond bank. 
 
Ljung-Box (Portmanteau) Q test:   To Investigate the effects of outliers on the Ljung-Box (Portmanteau) 
Q-test, we compare the values of the Q- Statistic on the residuals of ARIMA (2, 1, 1) model fitted to return 
series contaminated with outliers to the values of the Q- Statistic on the residuals of ARIMA (2, 1, 1) model 
fitted to the outlier adjusted return series. From Table 3, using the outlier contaminated series as a reference 
point, we identified that the presence of outliers reduces the power of Ljung-Box test by 210.14%, 246.97%, 
268.86%, 230.84%, 244.01% and 248.59% at lags 4, 8, 12, 16, 20 and 24, respectively. The implication is 
that, in the presence of outliers, the Ljung-Box test is distorted with its power becoming reduced and lower. 
Thus, the identification of true heteroscedasticity is hindered. 
 

Table 3. Effects of outliers on Ljung-box (Portmanteau) Q test 
 

Lag 
(order) 

Value of Q-statistic on residual 
series of ARIMA (2, 1, 1) model 
fitted to returns series of diamond 
bank 

Value of Q-statistic on 
residuals of ARIMA (2, 1, 1) 
model fitted to outlier 
adjusted return series of 
diamond bank 

Average effect of 
outlier identified 
(%) 

4 66.1 205 -210.14 
8 85.9 298 -246.92 
12 95.7 353 -268.86 
16 133.9 443 -230.84 
20 143.6 496 -244.01 
24 148.6 518 -248.59 

 
Lagrange Multiplier Test:  To investigate the effects of outliers on the Lagrange Multiplier (LM) test, we 
compare the values of the LM test Statistic on the residuals of ARIMA (2, 1, 1) model fitted to return series 
of contaminated with outliers to the values of the LM test statistic on the residuals of ARIMA (2, 1, 1) model 
fitted to the outlier adjusted return series. From Table 4, using the outlier contaminated series as a reference 
point, we identified that the presence of outliers increases the power of Lagrange Multiplier test by 232.29%, 
240.43%, 246.46%, 242.28%, 247.30% and 245.72% at lags 4, 8, 12, 16, 20 and 24, respectively. The 
implication is that, in the presence of outliers, the Lagrange Multiplier test is distorted with its power 
becoming increased and higher. Thus, spurious heteroscedasticity is detected when using Lagrange 
Multiplier test in the presence of outliers. 
 

Table 4. Effects of outliers on lagrange multiplier LM test 
 

Lag 
(order) 

Value of LM  on residual 
series of ARIMA (2, 1, 1) 
model fitted to returns 
series of diamond bank 

Value of LM on residuals of 
ARIMA (2, 1, 1) model fitted to 
outlier adjusted return series of 
diamond bank 

Average effect of 
outlier identified (%) 

4 2021 608.2 232.29 
8 992 291.4 240.43 
12 651 187.9 246.46 
16 472 137.9 242.28 
20 373 107.4 247.30 
24 307 88.8 245.72 

 

3.8 Fidelity Bank 
 
From Figs. 13 and 14, both ACF and PACF indicate that mixed model could be entertained. The following 
models, ARIMA (1, 1, 0), ARIMA (0, 1, 1), ARIMA (1, 1, 1), ARIMA (1, 1, 2) and ARIMA (2, 1, 1) are 
entertained tentatively. 
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From Table 5, ARIMA (1, 1, 1) model has the smallest AIC but one of its parameters is not significant. 
While ARIMA (1, 1, 2) model has the second smallest AIC but its parameters are not significant. However, 
ARIMA (1, 1, 0) model is selected based on the ground that its parameter is significant and nearest 
minimum AIC. 
 

 
 

Fig. 13. ACF of return series of fidelity bank 
 

 
 

Fig. 14. PACF of return series of fidelity bank 
 

Table 5. ARIMA models for return series of fidelity bank 
 

Model Parameter Akaike information 
criteria (AIC) �� �� �� �� 

ARIMA (1, 1, 0) 0.1606∗∗∗    − 11562.17 
ARIMA (0, 1, 1)   0.1494∗∗∗  − 11559.28 
ARIMA (1, 1, 1) 0.2569∗∗∗  −	0.0986  − 11563.16 
ARIMA (1, 1, 2) − 0.0498  0.2071 0.0628 − 11562.88 
ARIMA (2, 1, 1) − 0.0721 0.0619 0.2288  − 11561.98 

*** significance at 5% level 
 

Furthermore, evidence from Ljung-Box Q-statistics shows that  ARIMA(1,1,0) model is adequate at 5% 
level of significance given the Q-statistics at Lags 1, 4, 8 and 24, that is, Q(1) = 0.0376, Q(4) = 5.4261, Q(8) 
= 9.8001 and Q(24) = 23.379 with corresponding (P = .85), (P = .25), (P = .28) and (P = .50), respectively. 
 

3.9 Identification of heteroscedasticity in the return series of fidelity bank 
 
From Figs. 15 and 16, it could be observed that heteroscedasticity exists in the residual series of ARIMA (1, 
1, 0) model since some lags of ACF and PACF are outside the significance bounds. 
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Fig. 15. ACF of the squared residuals of ARIMA (1, 1, 0) model 

 
 

Fig. 16. PACF of the squared residuals of ARIMA (1, 1, 0) model 
 
Heteroscedasticity is said to exist in the residual series  at lags 4, 8, 12, 16, 20 and 24   since the 
Portmanteau-Q statistics, Q(4) =  450, Q(8) =  463, Q(12) = 468, Q(16) =  474, Q(20) =  483 and Q(24) = 
484 with corresponding (P = .00), (P = .00), (P = .00), (P = .00), (P = .00) and (P = .00)  are all less than 
5% level of significance. 

 
Also, evidence from Lagrange Multiplier (LM) test statistics confirms that heteroscedasticity is present  at 
lags 4, 8, 12, 16, 20 and 24 since the Lagrange Multiplier test statistics, LM(4) =  1423, LM(8) =  704, 
LM(12) =  466, LM(16) =  347, LM(20) =  275 and LM(24) = 228 with corresponding  (P = .00), (P = .00), 
(P = .00), (P = .00), (P = .00) and (P = .00)  are all less than 5% level of significance. 
 

3.10 Identification of outliers in the residual series of ARIMA (1, 1, 0) model fitted to 
the return series of fidelity bank 

 
Considering the critical value, C = 4 and based on the condition that n ≥ 450,	about sixteen (16) different 
outliers are identified to have contaminated the residuals series of ARIMA (1, 1, 0) model, two (2) 
innovation outliers (IO), five (5) additive outliers and nine (9) temporary change. The outliers at a given time 
are indicated as  follows:  IO (t = 1555), IO (t = 2292), AO (t = 1789), AO (t = 1841), AO (t = 2042), AO (t 
= 2539), AO (t = 2043), TC (t = 827), TC (t = 847), TC (t = 859), TC (t = 1665), TC (t = 1724), TC (t = 
2263), TC (t = 2280), TC (t = 691) and TC (t = 950). However, in financial time series, it is assumed that the 
error is uncorrelated with its past value, and then all the outliers are classified as innovation outliers with a 
unified effect. 

 
3.11 Building ARIMA (1, 1, 0) model for outlier adjusted return series of fidelity 

bank 
 
ARIMA(1,1,0) model is fitted to the outlier adjusted series with its parameter significant at 5% level [Table 
6] and is found to be adequate at 5% level of significance given the Q-statistics at Lags 1, 4, 8 and 24, that is, 
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Q(1) = 0.0003, Q(4) = 4.2007, Q(8) =13.92 and Q(24) = 29.649 with corresponding (P = .99), (P = .38), (P 
= .09) and (P = .20). 
 

Table 6. ARIMA (1, 1, 0) model for outlier adjusted return series of fidelity bank 
 

Model Parameter (�) Akaike information criteria 
ARIMA(1,1,0)  0.1715∗∗∗ − 11954.67 

*** significance at 5% level 
 

3.12 Identification of heteroscedasticity in Outlier adjusted return series of fidelity 
bank 

 
In Figs. 17 and 18, it could be observed that heteroscedasticity exists in the residual series of ARIMA (1, 1, 
0) model since several the lags of ACF and PACF   are outside the significance bounds; 
 

 
 

Fig. 17. ACF of squared residuals of ARIMA (1, 1, 0) model fitted to outlier adjusted return series of 
fidelity bank 

 

 
 

Fig. 18. PACF of squared residuals of ARIMA (1, 1, 0) model fitted to outlier adjusted return series of 
fidelity bank 

 
Also, heteroscedasticity is said to exist in the residual series  at lags 4, 8, 12, 16, 20 and 24   since the 
Portmanteau-Q statistics, Q(4) = 399, Q(8) =  527, Q(12) = 646, Q(16) =  715, Q(20) =  768 and Q(24) = 
847 with corresponding (P = .00), (P = .00), (P = .00), (P = .00) and (P = .00) are all less than 5% level of 
significance. 
 
More evidence from Lagrange-Multiplier (LM) test statistics confirms that heteroscedasticity is present in 
residual series of ARIMA (1, 1, 0) model fitted to outlier adjusted return series at lags 4, 8, 12, 16, 20 and 24 
since the Lagrange Multiplier test statistics, LM(4) = 372.7, LM(8) =  177.3, LM(12) =  114.5, LM(16) =  
84.4, LM(20) =  66.7 and LM(24) = 54.7 with corresponding (P = .00), (P = .00), (P = .00), (P =1.10e-11), 
(P =3.18e-07) and (P = 2.17e-04)  are all less than 5% level of significance. 
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3.13 Effects of outliers on heteroscedasticity identification tools in the return series of 
fidelity bank 

 
Correlogram: Comparing the ACF and PACF of the squared residuals of ARIMA (1, 1, 0) model fitted the 
outlier contaminated return series of [Figs. 15 and 16] to the ACF and PACF of the squared residuals of 
ARIMA (1, 1, 0) model fitted the outlier adjusted return series of  [Figs. 17 and 18], it is obvious that the 
significant lags in both ACF and PACF of squared residuals of the ARIMA(1, 1, 0) model fitted the outlier 
adjusted return series of are increasing and more in number than those of the squared residuals of ARIMA 
(1, 1, 0) model fitted the outlier contaminated return series. Hence, it could be deduced that the presence of 
outliers hides heterosceadsticity detection in ACF and PACF of return series of Fidelity bank. 
 
Ljung-Box (Portmanteau) Q test: From Table 7, using the outlier contaminated series as a reference point, 
we identified that the presence of outliers reduces the power of Ljung-Box test by 13.82%, 38.03%, 50.84% , 
59.01and 74.79% at lags 8, 12, 16, 20 and 24, respectively with exception at lag 4 where the power of 
Ljung-Box test is increased by 24.67%. The implication is that, in the presence of outliers, the Ljung- Box 
test is distorted with its power becoming reduced and lower. Thus, the identification of true 
heteroscedasticity is hindered. 
 

Table 7. Effects of Outliers on Ljung-Box (Portmanteau) Q test 
 

Lag 
(order) 

Value of Q-statistic on residual 
series of ARIMA (1, 1, 0) model 
fitted to returns series of fidelity 
bank 

Value of Q-statistic on residuals of 
ARIMA (1, 1, 0) model fitted to 
outlier adjusted return series of 
fidelity bank 

Average effect of 
outlier identified 
(%) 

4 450 399 24.67 
8 463 527 -13.82 
12 468 646 -38.03 
16 474 715 -50.84 
20 483 768 -59.01 
24 484 847 -74.79 

 
Lagrange Multiplier Test:  From Table 8, using the outlier contaminated series as a reference point, we 
identified that the presence of outliers increases the power of Lagrange Multiplier test by 73.81%, 74.82%, 
75.43%, 75.65%, 75.75% and 76.01% at lags 4, 8, 12, 16, 20 and 24, respectively. The implication is that, in 
the presence of outliers, the Lagrange Multiplier test is distorted with its power becoming increased and 
higher. Thus, spurious heteroscedasticity is detected when using Lagrange Multiplier test in the presence of 
outliers. 

Table 8. Effects of outliers on lagrange multiplier LM test 
 

Lag 
(order) 

Value of LM  on residual 
series of ARIMA (1, 1, 0) 
model fitted to returns series 
of fidelity bank 

Value of LM on residuals of 
ARIMA (1, 1, 0) model fitted to 
outlier adjusted return series of 
fidelity bank 

Average effect of 
outlier identified 
(%) 

4 1423 372.7 73.81 
8 704 177.3 74.82 
12 466 114.5 75.43 
16 347 84.4 75.65 
20 275 66.7 75.75 
24 228 54.7 76.01 

 

3.14 Skye bank 
 
From Figs. 19 and 20, both ACF and PACF indicate that mixed model could be entertained. The following 
models, ARIMA (1, 1, 0), ARIMA (0, 1, 1) and ARIMA (1, 1, 1) are entertained tentatively. 
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Fig. 19. ACF of return series of Skye bank 
 

 
 

Fig. 20. ACF of return series of Skye bank 
 

From Table 9, the ARIMA (1, 1, 0) model is selected based on the ground of smallest AIC and the 
significance of the parameters. 
 

Table 9. ARIMA models for return series of Skye bank 
 

Model Parameter Akaike information criteria (AIC) 
�� �� 

ARIMA (1, 1, 0) 0.1874∗∗∗  − 10713.39 
ARIMA (0, 1, 1)  0.1827∗∗∗ − 10711.03 
ARIMA (1, 1, 1) 0.1522 0.0364 − 10711.54 

*** significance at 5% level 
 

Moreover, evidence from Ljung - Box Q-statistics shows that ARIMA (1, 1, 0) model is adequate at 5% 
level of significance given the Q-statistics at Lags 1, 4, 8 and 24, that is, Q(1) = 0.0050, Q(4) = 4.1838, Q(8) 
= 8.2689 and  Q(24) = 22.469 with corresponding (P = .94), (P = .38), (P =.41) and (P = .55), respectively. 
 

3.15 Identification of heteroscedasticity in the return series of Skye bank 
 
From the ACF and PACF of the squared residual series of ARIMA (1, 1, 0) model in Figs. 21 and 22, it 
could be observed that heteroscedasticity exists in the residual series of ARIMA (1, 1, 0) model since the 
first lags of ACF and PACF are outside the significance bounds. 
 

 
 

Fig. 21. ACF of the squared residuals of ARIMA (1, 1, 0) model 
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Fig. 22. PACF of the squared residuals of ARIMA (1, 1, 0) model 
  
For the residuals of ARIMA (1, 1, 0) model at lags 4, 8, 12, 16, 20 and 24,  and the Portmanteau-Q statistics; 
Q(4) =  10.3, Q(8) =  10.3, Q(12) = 10.3, Q(16) =  10.4, Q(20) =  10.4 and Q(24) = 10.5 with corresponding 
(P = .04), (P = .24), (P = .59), (P = .85), (P = .96) and (P = .99). It is observed that heteroscedasticity 
exists only at lag 4 at 5% level of significance. 
 

Also, evidence from Lagrange-Multiplier (LM) test statistics confirms that heteroscedasticity is present in 
residual series of ARIMA (1, 1, 0) model at lags 4, 8, 12, 16, 20 and 24 since the Lagrange Multiplier test 
statistics, LM(4) =  57956, LM(8) =  28852, LM(12) =  19141, LM(16) =  14284, LM(20) =  11371 and 
LM(24) = 9423 with corresponding (P = .00), (P = .00), (P = .00), (P = .00), (P = .00) and (P = .00)  are all 
less than 5% level of significance. 
 

3.16 Identification of outliers in the residual Series of ARIMA (1, 1, 0) model fitted to 
the return series of Skye bank 

 
Using the critical value, C = 4 and based on the condition n	≥ 450,	about  twenty six (26) different outliers 
were identified to have contaminated the residuals series of ARIMA(1,1,0) model, six (6) innovation outliers 
(IO), six (6) additive outliers and fourteen (14) temporary change (TC). The outliers at a given time are 
indicated as  follows:  IO (t = 211), IO (t = 1841), IO(t = 1843), IO(t = 2178), IO(t = 2263), IO(t = 2314), 
AO (t = 210), AO (t = 1726), AO (t = 1984), AO (t = 2281), AO (t = 2414), AO(t = 2456), TC (t = 209), TC 
(t = 740), TC (t = 742), TC (t = 827), TC (t = 1723), TC (t = 2311), TC (t = 2381), TC (t = 2468), TC (t = 
2590), TC (t = 2592), TC (t = 2599), TC (t = 212), TC (t = 741) and TC (t = 2589). However, in financial 
time series, it is assumed that the error is uncorrelated with its past value as such all the outliers are classified 
as innovation outliers with a unified effect. 
 

3.17 Building ARIMA (1, 1, 0) model for outlier adjusted return series of skye bank 
 
ARIMA (1, 1, 0) model is fitted to the outlier adjusted series with the parameter significant [Table 10]  and 
is found to be adequate at 5% level given the Q-statistics at Lags 1, 4, 8 and 24, that is, Q(1) = 0.1224, Q(4) 
= 3.7952, Q(8) =7.7095 and Q(24) =22.691 with corresponding (P =0.73), (P = 0.43), (P = 0.46) and (P = 
0.54), respectively. 
 

Table 10. ARIMA (1, 1, 0) model for outlier adjusted return series of Skye bank 
 

Model Parameter (�) Akaike information criteria 
ARIMA(1,1,0)  0.2425∗∗∗ − 11692.3 

*** significance at 5% 
 

3.18 Identification of heteroscedasticity in outlier adjusted return series of skye bank 
 
In Figs. 23 and 24, it could be observed that heteroscedasticity exists in the residual series of ARIMA (1, 1, 
0) model since all the lags of the ACF and some lags of PACF are outside the significance bounds. 
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Fig. 23. ACF of squared residuals of ARIMA (1, 1, 0) model fitted to outlier adjusted return series of 
Skye bank 

 

 
 

Fig. 24. PACF of Squared Residuals of ARIMA (1, 1, 0) model fitted to outlier adjusted  return series 
of Skye bank 

 
Heteroscedasticity is said to exist in the residual series  at lags 4, 8, 12, 16, 20 and 24   since the 
Portmanteau-Q statistics, Q(4) = 341, Q(8) =  514, Q(12) = 678, Q(16) =  817, Q(20) =  902 and Q(24) = 
1006 with corresponding  (P = .00), (P = .00), (P = .00), (P = .00), (P = .00) and (P = .00)  are all less than 
5% level of significance. 
 
Also, evidence from Lagrange-Multiplier (LM) test statistics confirms that heteroscedasticity is present in 
residual series of ARIMA (1, 1, 0) model fitted to outlier adjusted return series at lags 4, 8, 12, 16, 20 and 24 
since the Lagrange Multiplier test statistics, LM(4) = 468.4, LM(8) =  219.7, LM(12) =  140.8, LM(16) =  
102.7, LM(20) =  80.8 and LM(24) = 65.4 with corresponding  (P = .00), (P = .00), (P = .00), (P = 4.0e-
15), (P = 1.38e-09) and (P = 6.09e-06)  are all less than 5% level of significance. 
 

3.19 Effects of outliers on heteroscedasticity identification tools in the return series 
of Skye bank 

 
Correlogram: Comparing the ACF and PACF of the squared residuals of ARIMA(1,1,0) model fitted the 
outlier contaminated return series of Skye bank [Figs. 21 and 22] to the ACF and PACF of the squared 
residuals of ARIMA(1, 1, 0) model fitted the outlier adjusted return series [Figs. 23 and 24], it is obvious 
that the significant lags in both ACF and PACF of squared residuals of the ARIMA (1, 1, 0) model fitted the 
outlier adjusted return series are increasing and more in number than those of the squared residuals of 
ARIMA (1, 1, 0) model fitted the outlier contaminated return series. Hence, it could be deduced that the 
presence of outliers hides heterosceadsticity detection in ACF and PACF of return series of Skye bank. 
 
Ljung-Box (Portmanteau) Q test: From Table 11, using the outlier contaminated series as a reference 
point, we identified that the presence of outliers reduces the power of Ljung-Box test by 3210.68%, 
4890.29%, 6482.52%, 7755.77%, 8573.08 and 98.96% at lags 4, 8, 12, 16, 20 and 24, respectively.  The 
implication is that, in the presence of outliers, the Ljung- Box test is distorted with its power becoming 
reduced and lower. Thus, the identification of true heteroscedasticity is hindered. 
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Table 11. Effects of outliers on Ljung-box (Portmanteau) Q test 
 

Lag 

(order) 

Value of Q-statistic on residual 
series of ARIMA (1 ,1 ,0) model 
fitted to returns series of Skye 
bank 

Value of Q-statistic on residuals 
of ARIMA(1 ,1, 0) model fitted to 
outlier adjusted return series of 
Skye bank 

Average effect of 
outlier identified 
(%) 

4 10.3 341 -3210.68 

8 10.3 514 -4890.29 

12 10.3 678 -6482.52 

16 10.4 817 -7755.77 

20 10.4 902 -8573.08 

24 10.5 1006 -9480. 95 
 

3.20 Lagrange multiplier test 
 
From Table 12, using the outlier contaminated series as a reference point, we identified that the presence of 
outliers increases the power of Lagrange Multiplier test by 99.19%,99.24%, 99.26%, 99.28%, 99.29 and 
99.31% at lags 4, 8, 12, 16, 20 and 24, respectively. The implication is that, in the presence of outliers, the 
Lagrange Multiplier test is distorted with its power becoming increased and higher. Thus, spurious 
heteroscedasticity is detected when using Lagrange Multiplier test in the presence of outliers. 
 

Table 12. Effects of outliers on Lagrange multiplier LM test 
 

Lag 
(order) 

Value of LM  on residual series 
of ARIMA(1,1,0) model fitted to 
returns series of Skye bank 

Value of LM on residuals of 
ARIMA(1,1,0) model fitted to 
outlier adjusted return series 
of Skye bank 

Average effect of 
outlier identified 
(%) 

4 57956 468.4 99.19 
8 28852 219.7 99.24 
12 19141 140.8 99.26 
16 14284 102.7 99.28 
20 11371 80.8 99.29 
24 9423 65.4 99.31 

 

4 Conclusion 
 
So far, ARIMA (2, 1, 1), ARIMA (1, 1, 0) and ARIMA (1, 1, 0) models were identified and successfully 
fitted to the share price returns series of Diamond Bank, Fidelity Bank and Skye bank, respectively. The 
series of the three banks were found to be contaminated with several outliers. Having removed the effects of 
outliers from the series and for the purpose of argument, ARIMA (2, 1, 1), ARIMA (1, 1, 0) and ARIMA (1, 
1, 0) models were fitted to the outlier-adjusted series of the three respective banks. Particularly, 
heteroscedasticity was detected in both outlier contaminated and outlier adjusted series of the respective 
banks using correlogram, Ljung-Box test and Lagrange Multiplier. Our findings revealed that outliers 
distort, hamper and hide or exaggerate the detection of true heteroscedasticity in returns series of the banks 
under study. Hence, it could be deduced that, in order to detect and identify the true heteroscedasticity in 
discrete-time series, it is important to take into consideration the presence of outliers. Furthermore, this study 
could be extended to cover the effects of outliers on parameters estimation in  heteroscedastic models.  
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