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Abstract 
A Fourier-Chebyshev Petrov-Galerkin spectral method is described for high 
accuracy computation of linearized dynamics for flow in a circular pipe. The 
code used here is based on solenoidal velocity variables and is written in 
FORTRAN. Systematic studies are presented of the dependence of eigenva-
lues and other quantities on the axial and azimuthal wave numbers; the Rey-
nolds’ number of up to 107 and the Weissenberg’s number that is considered 
lower here. The flow will be considered stable if all the real parts of the ei-
genvalues obtained are negative and unstable if only one of these values is 
positive. 
 
Keywords 
Viscoelastic Fluids, Oldroyd-B Model, Linear Stability, Petrov-Galerkin,  
Generalized Eigenvalue Problem 

 

1. Introduction 

The flows in the pipes are presented in several industrial applications such as 
heat exchangers, chemical reactors, gas turbine cooling and heating systems and 
combustion chambers and mixing systems. 

The properties of a flowing fluid vary with the type of fluid. By adding, for 
example polymers or micro-metric particles that can interact with each other to 
a liquid under flow; its properties are greatly modified. It can react to hydrody-
namic friction forces by changing equilibrium stator conformation through reo-
rientation and deformation. A colloidal suspension can react to hydrodynamic 
forces by modifying the spatial distribution of the particles. It is these deformi-
ties and this reorganization which are at the origin of the non-Newtonian prop-
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erties of the polymer solutions. When the polymer chains are quite long and 
flexible, they are added to a fluid, which acquires viscoelastic properties. Viscoe-
lastic fluids have elastic properties characterized by a relaxation time. This elas-
ticity plays a fundamental role and would be of the same order of magnitude as 
the characteristic time of the flow. 

When a viscoelastic fluid is in flow, the polymer chains are stretched, which 
generates elastic stresses. These are the function of the history of the movement 
and the deformations undergone by the fluid particles along their trajectory. It 
follows a non-linear relationship between the elastic stresses thus generated and 
the rate of deformation. The conservation equations of the momentum of such a 
fluid differ from those of Navier-Stokes newtonian fluids by an additional term 
which involves elastic stresses due to the stretching of polymer chains by hydro-
dynamic friction forces. 

The motivation for this study is largely related to the fact that viscoelastic flu-
ids are the basis of many industrial applications, particularly in the polymer in-
dustry, the paper industry, the food industry, etc. and the stability of the flow 
can have consequences on the final product (quality of the product, quantity of 
production, etc.). 

Three classical incompressible shear flows have received attention in connec-
tion with phenomenon of instability. Plane poiseuille and plane-Couette channel 
flows are the most accessible to theoretical analysis and numerical computation. 
Pipe poiseuille or Hagen-poiseuille flows is so accessible to laboratory experi-
ments. It was the context of flow in a pipe that Reynolds in 1883 identified the 
basic problem of this field: when and how do high-speed flows undergo transi-
tion from the laminar state to more complicated states as puffs, slugs, etc. The 
laminar flow of a fluid through a finite dimensional cylindrical conduit is ma-
thematically stable, but in practice such a flow may become unstable if the Rey-
nolds is high enough. It is generally accepted that one of the explanations for this 
phenomenon is that, although the laminar flow is stable for infinitesimal per-
turbations of the velocity, certain amplitudes of the perturbations are sufficient 
to generate a large number of Reynolds. 

The present paper concerns the numerical simulation of pipe flow. We aim to 
focus on some of the principal mechanisms by which small perturbations in high 
speed flow may grow as they flow downstream. Our focus is on the elucidation 
of key mechanisms involved in the phenomenon of instabilities of the flow of a 
viscoelastic fluid. On the other hand experience shows that the flow of a viscoe-
lastic fluid can become even with a low Reynolds number. 

With these aims in mind, and with an acute awareness of the continuity ad-
vance of desktop and laptop computers, we have written a Petrov-Galerkin spec-
tral code for pipe flow in FORTRAN. In principle we are thus engaged in direct 
numerical simulation (DNS) of the Navier-Stokes equations. 

Meseguer & Trefethen [1] conducted this study with a newtonian fluid. For 
this kind of fluid the flow is stable up to 710eR = . Esmael [2] and then Carranza 
2012 [3] have in turn studied this problem with another type of fluid that de-
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scribed by the rheofluidifying fluid model and have comed to the same conclu-
sion. For a viscoelastic fluid described by the Oldroyd-B model [4], we try to ex-
plain the origin of the instabilities by studying the terms relating respectively to 
viscous effects Re and elastic effects ω . 

Previous numerical simulation of (nonlinear) pipe flow has included works of 
Boberg and Brosa [5], Komminaho and Johasson [6] Zhang et al. [7] and Zika-
nov [8]. In addition, various previous authors have simulated linearized pipe 
flow [9] [10] [11] [12]. Our methods could be summarized as a solenoidal 
scheme for the pipe of the sort proposed by Leonard and Wray [10]. 

At our level the problem we are studying has an additive term ( divσ ). We try 
to show the influence of this term on the structure of this flow. To our knowledge, 
a theoretical study has not been done before for this type of fluid. 

2. Equations Governing the Problem 

We study the flow of a viscoelastic fluid along a cylinder of circular section of 
horizontal axis (Oz). Such a flow can be described by a cylindrical coordinates 
system ( ), ,r zθ . 

The flow of a viscoelastic fluid can be described using three main equations: 
the momentum conservation equation, the mass conservation Equation (or con-
tinuity equation), and the behavioral equation of the extra-constraint (Chupin 
2003 [13] and Oldroyd [4]). We consider the flow an incompressible viscoelastic 
fluid with dynamic viscosity η  and density ρ  driven by an extremal constant 
axial pressure gradient. 

( ) ( ) ( ){ }

( )

( )

2 1

0

2

P f div D div
t

div
t

D D
Dt

ρ η ω σ

ρ ρ

σ σ ηω
λ λ

 ∂ + ⋅∇ = −∇ + + − +  ∂ 
∂

+ = ∂
 + =


u u u u

u

u





  





      (1) 

The equations of conservation of momentum, continuity, and constitutive 
form in dimensionless form are used by using the maximum speed 0W  in the 
established threshold regime, the radius R of the pipe and the quantity 2

0Wρ  as 
a speed scale, length and Pessure/stress respectively: 
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By introducing these dimensionless parameters into the equations governing 
the problem, we obtain the following dimensionless equations: 
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We will omit the sign ~ voluntarily to lighten the scriptures. 
We focus here on studying the flow of a viscoelastic fluid described by the Ol-

droyd-B model and subjected to disturbances.  
This disturbed flow is considered as the superposition of a disturbance 
( ){ }, , ; ;u v w p σ′ ′ ′ ′ ′  and of basic flow ( ){ }0,0, , ,b b bW P σ . Disturbance equations 

are obtained by subtracting the written conservation equations for the disturbed 
flow { }, , , ,b b bu v W w P p σ σ ′+ +′ ′ +′ ′ , those satisfied by the basic flow. We obtain 
after calculation: 

( ) ( ) ( )1
b b

e

W W
R

u p
t

ω
σ

−
′ ′ ′− ∇ ∇ −∇

′∂ ′ ′= ⋅ + ∆−
∂

+⋅u u u
 

   div         (2) 

div 0u′ =                             (3) 

( ) ( ) ( )2, ,b
b a b a b

e e e

u W g g W D
t r z W R W

σσ σ σ ωσ σ
′ ′∂∂ ∂ ′ ′+ + + + + =

′
′ ′

∂ ∂ ∂
u u



    (4) 

where  

( ) ( ) ( ) ( ) ( )( ),g W W D Dσ σ σ σ σ= − + +a u u u a u u    

         (5) 

( )
( )

2
D

∇ +∇
=

tu u
u

 

  

Is the tensor of deformation rates and  

( )
( )

2
W

∇ −∇
=

tu u
u

 

  

is the vorticity tensor. a  is defined as a parameter which value is between −1 
and +1.  

Considering in addition that the elastic contribution of the extra stress σ ′  is 

a perturbation of the Newtonian one sσ ′  which is equal to ( )2

e

D
R
ω ′u , it comes: 

( ) ( )b b e
e

W W p
t R
u σω′ ′ ′ ′− ∇ ∇ −
′∂ ′∇ += − ⋅ ∆⋅

∂
+u u u

 

   div         (6) 

( ) ( ) ( ) ( ){ }2s s e e
b

e
b b z b

e e

e e
eW W W D D W

t z W R
σ σ σ ωσ
′ ′ ′∂ ∂ ′ ′ ′+ + + ∇ = − ∂ + ∇

∂ ∂
u u

 

    (7) 

By u , we define the none-dimensional velocity field of the fluid whose radial, 
azimuth and axial components are given in the order by the triple ( ), ,u v w , σ  
is an additional term called extra stress and ω  is the parameter of delay de-
fined by 

1 λω
λ

= −
′

                           (8) 

The system is closed with the following boundary and initial conditions: 

0 if 1u r= =                           (9) 

where 0RW Re
ν

=  is defined as the Reynolds number with ην
ρ

=  the kine-
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matic viscosity of the fluid, 0WWe
R

λ
=  is the Weissenberg’s number. 

3. Procedure and Numerical Bases  

We consider that the variation of the perturbation of the fields of velocity, pres-
sure and extra stress is periodic along the azimuthal and axial directions. These 
considerations make it possible to approximate u  in the following form. 

( ) ( ) ( ) ( )0

0
, , ; e

L N M
i n lk z

mnl mnl
l Ln N m

r z t t r θθ α φ +

=− =− =

= ∑ ∑ ∑su            (10) 

This approximation was used by Meseguer & Trefethen (2001) [14]. 
The continuity equation leads to a linear dependence between the three com-

ponents of ( ), ,s r zθu  leading to a system with two degrees of freedom. There-
fore we note: 

( ) ( ) ( ) ( ) ( ) ( )0

0
, , ; e

L N M
i n lk zj j

mnl mnl
l Ln N m

r z t t r θθ α φ +

=− =− =

 =  ∑ ∑ ∑su          (11) 

For long periods, this approximation can be written in the form: 

( ) ( ) ( ) ( )0

0
, , , e e

L N M
i n lk zjt

mnl
l Ln N m

r z t r θχθ φ +

=− =− =

 =  ∑ ∑ ∑su            (12) 

For ( )1, 2j =  the substitution of Equation (12) in the Equation (6) the prob-
lem result in a system of ordinary differential equations of coefficients ( ) ( )j

m tα . 
This substitution is followed by a projection based on the scalar product: 

( ) ( )
1

*

1

, dF g w z F g z
−

⋅= ∫  

where *F  designates the conjugated function of F.  
The basic functions will be chosen so that integrand is even, which will result 

in: 

( ) ( )
1 1

1 0

d 2 dG r r G r r
−

=∫ ∫                     (13)  

The basic functions are also chosen so that the projection of the pressure term 
is zero. For this purpose functions based on Chebyshev polynomial were consi-
dered. This choice imposes two essential criteria. The first consists of choosing 
weights associated with Chebyshev polynomials, which makes it easier to calcu-
late the scalar product. The second criterion relates to the approximation of the 
integral by a Gauss-Chebyshev-Lobatto quadrature of the form: 

( ) ( ) ( ) ( ) ( )
1

* *

00

, d
M

j j i
j

F g w r F g r w r F r g r
=

= ≈⋅ ∑∫          (14) 

( ) ( )1,2 1,2
, , , ,andm n l m n lF gφ ψ= =                    (15) 

We define, 

( ) ( ) ( ) ( )22 2
2 21 ; 1m m m mh r r T g r r T= − = −           (16) 
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2mT  is the Chebyshev polynomial defined by ( )2 cos 2mT mθ=  
The basic functions and tests were proposed by Leonard & Wray 1982 [10] 

then used by Meseguer & Trefethen 2001 [14] and are defined as follows: 
Basic functions 
1st case: 0n =  

( ) ( ) ( )

( )

( )
( )

0

1 2
, , , ,

0 0
;

0
0

0

m

m l n m l nm
m

m

ik lrg r

rh r D rg r si l
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φ φ
+

 
  
  = =     ≠         = 

        (17) 

2nd case: 0n ≠  
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1 2 1
, , , , 0

0
;

0

m

m l n m l n mm

m

inr g r

ik lr h rD r g r
inr h r

δ

δδ

δ

φ φ

−

+

 −  
   

= =  −           

         (18) 

2 if is even
1 if is odd

n
n

δ


= 


                      (19) 

Test functions 
1stcase: 0n =  

( ) ( )1
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0
1
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 
 =   − 
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0
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+
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2nd case: 0n ≠  
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0
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m l n
m

m

ik lr h r

inr h r si l r
r h r si l

β
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β
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+

+

−

 
 
 
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            (23) 

0 if is even
1 if is odd

n
n

β


= 


                      (24) 

Using the Fourier representation, the continuity equation becomes 

( ) ( ) ( )0 0inDu r v r i w r
r

λ+ + =                   (25) 
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1D D
r+ = +                           (26) 

4. Numerical Implementation 

Let 

( ) ( ) 1
b b e

e

u u W W u p u
t R

σ∂ ′= − ⋅∇ − ⋅∇ −∇ + ∆ +∇ ⋅
∂





   
 

 



          (27) 

Replacing u  by the basic funct:ions and projecting on the basis of the test 
functions, it comes: 

( ) ( ) 1, ,b b e
e

W W p
t R
ψ σ ψ

 ∂  ′= − ⋅∇ − ⋅∇ −∇ + ∆ +∇ ⋅  ∂   
s

s s s
u u u u

 
   

  (28) 

The numerical method chosen is adapted from work in the early 1980 by Leo-
nard & Wray [10]. 

With this Petrov-Galerkin procedure that was then used by Meseguer & Tre-
fethen 2000 [15] and Meseguer & Mellibovesky 2007 [16], we obtain: 

( ) ( )
( ) ( )

( ) ( )
( ) ( )

1 1 2 1 1
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



1

2

d
d
 

+  
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    (29) 

where 

( ) ( )( ) ( )1,2 1,2 1,2 1,2
, , , ,, ; ,b b m n l e m n lc W W dψ σ ψ′= − ∇ − ∇ = ∇⋅ ⋅ ⋅s su u


 





     (30) 

The matrices 1,2c  and 1,2d  derive from the projection of the nonlinear 
terms and can be calculated with a pseudo-spectral method by Fast Fourier 
Transform (FFT). 

By posing: 

( ) ( )
( ) ( )

1 1 2 1 1 1 1, , , , , , , , , ,
2 2 21 2 2 2

, ,, , , , , , , ,

Δ , Δ ,1
Δ , Δ ,
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c dA
R c d

φ ψ φ ψ α
αφ ψ φ ψ

       = + +             
   (31) 

And 

( ) ( )
( ) ( )

1 1 2 1
, , , , , , , ,

1 2 2 2
, , , , , , , ,

, ,

, ,

m n l m n l m n l m n l

m n l m n l m n l m n l

B
φ ψ φ ψ

φ ψ φ ψ

 
 =
 
 

                    (32) 

The problem obtained is a problem with the generalized eigenvalues 
( )Av B vχ=  that we will solve numerically with QZ algorithm used by J. P. Ber-
lioz [17]. To implement this method, we will use Housholder’s unitary reflection 
matrices and Givens rotation matrices (A. Quarteroni, R. Sacco and F. Saleri [18]) 
and (L. Amodei and J.P. Dedieu [19]). 

5. Results and Discussions 

We will treat this problem according to four cases that are: 
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5.1. Case of One-Dimensional Disturbance (n = 0; l = 0) 

Let us first note that for such a flow, the radial component of the velocity is zero 
( )0u = . On the other hand, the Figure 1 clearly shows that the fluid is Newto-
nian ( )0ω =  or viscoelastic ( )0ω > , the eigenvalues are purely real and nega-
tive that it’s worth the Reynolds’ number Re. For both types of fluid, the flow re-
mains stable whatever the Reynolds number.  

5.2. Case of Homogeneous Disturbance (n ≠ 0; k0 = 0) 

The eigenvalues related to this flow are real and negative for the case of the 
Newtonian fluid. The result does not change when increasing the number of 
Reynolds up to values close to 107 (Figure 2(b)). On the other hand, this is not 
always the case for a viscoelastic fluid. For this type of fluid the real part of some 
eigenvalues is positive for even for a Reynolds number equal to 35 10eR = × . 
However, instability occurs with a higher Reynolds number when the Weissen-
berg’s number We decreases (Figure 2(c)). The flow of a Newtonian fluid is sta-
ble whereas that of a viscoelastic fluid is unstable for a Reynolds number 
( 35 10eR = × ). 

5.3. Case of an Axisymmetric Disturbance (n = 0; k0 ≠ 0) 

The real parts of the eigenvalues remain negative for the Newtonian fluids, whe-
reas for the same flow conditions, the real parts of the eigenvalues are not all 
negative for a viscoelastic fluid, which testifies to the appearance of instabilities 
in flow. It is also noted that beyond a certain value of the Reynolds number, in-
stabilities appear in the flow itself for the Newtonian fluid, which is not the case  
 

 
Figure 1. Spectrum of the eigenvalues of a one-dimensional disturbance ( )00, 0n k= = , 

case of Newtonian fluid (in red), case of viscoelastic fluid (black), with Reynolds’ number 
35 10eR = × . 

https://doi.org/10.4236/mme.2018.84018


I. Kama et al. 
 

 

DOI: 10.4236/mme.2018.84018 272 Modern Mechanical Engineering 
 

 
(a) 

 
(b)                                                          (c) 

Figure 2. (a) Spectrum of the eigenvalues of a homogeneous disturbance along the axis with 01; 0n k= = , case of a Newtonian 

fluid (black), case of a viscoelastic fluid (red) with Reynolds number 35 10eR = ×  and Weissenberg’s number 210We −= ; (b) 
Spectrum of the eigenvalues of a homogeneous disturbance along the axis with for different values of the Reynolds number: case of 
a Newtonian fluid ( )0ω = ; (c) Spectrum of the eigenvalues of a homogeneous disturbance along the axis with 01; 0n k= =  for 

different values of the Reynolds number: case of a viscoelastic fluid with 310We −= . 
 
for one-dimensional and homogeneous flows. Indeed, the term convection 
( )u u⋅∇
  , responsible for the exchanges between the base flow and the disturbed 

flow, is a source of instabilities, a term which is also nil for the Newtonian 
one-dimensional and homogeneous flows. In addition, it is noted (Figure 3(b)) 
that the greater the elasticity of the fluid, the greater the instability is important. 
From this it can be deduced that elasticity is also a source of instability. 

5.4. Case of Three-Dimensional Perturbation (n ≠ 0; l ≠ 0) 

The graph clearly shows a spectrum of eigenvalues whose real parts are all nega-
tive for the Newtonian fluid. For the viscoelastic fluid, however, the real parts of  
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(a) 

 
(b) 

Figure 3. (a) Spectrum of the eigenvalues of an axisymmetric disturbance with 

00; 0.1n k= = , case of the Newtonian fluid (black), case of the viscoelastic fluid (red) with 
35 10eR = ×  and 210We −= ; (b) Evolution of the most unstable eigenvalue according to 

the delay parameter ω  with Reynolds’ number 410Re =  and Weissenberg’s number 
210We −= ; (b) shows that the one-dimensional flow of a viscoelastic fluid with a Reynolds 

number 410Re =  is stable for a delay parameter ranging from 0 (Newtonian fluid) to 
0.35. The homogeneous flow of a viscoelastic fluid remains stable as long as the retarda-
tion parameter is less than 0.2 and then becomes unstable beyond this value, but this flow 
remains stable until 0.25ω =  for 0 0.1k = . However at beyond 0 0.1k = , this thre-
shold of instability is reached from 0.2ω = . 
 
the eigenvalues are not negative and would indicate that the fluid flows unstable 
for the same Reynolds number 35 10eR = ×  (Figure 4). 
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Figure 4. Spectrum of the eigenvalues of a three-dimensional perturbation 01; 0.1n k= =  
case of the Newtonian fluid (black), case of viscoelastic fluid (red) with Reynolds number 

35 10Re = ×  and Weissenberg’s number 210We −= . 

6. Conclusion 

The analysis of the different results shows that the linear flow of a Newtonian 
fluid is stable, whereas that of a viscoelastic fluid with a number of Weissenberg 

210We −=  and for a delay parameter ( 0.1ω = ) is unstable at from 35 10eR = ×  
except for the one-dimensional case. Indeed, for the one-dimensional and ho-
mogenous cases, the term relating to the convection which is responsible for the 
exchange of energies between the base flow and the disturbed flow is almost nil. 
It can therefore be said that viscoelasticity and the term convection are at the 
origin of the instabilities observed. 
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Appendix Code 

The algorithm QZ makes possible to determine the eigenvalues and optionally the 
eigenvectors of the problem with generalized eigenvalues ( )Av Bvχ= . The idea is 
to transform the matrices A and B into similar upper triangular matrices. If A and B 
are respectively upper hessenberg and triangular matrices respectively. We call the  

QZ decomposition of pair ( ),A B , the double factorization 
( )
QA R
QB Z T

=
 =

 with Q 

unitary matrix, Z upper Hessenberg, R and T upper triangular. We will note later on 

QAZ A
QBZ B

 =


=





 we can construct a unitary decomposing matrix A, as a product of  

1n −  matrices of elementary rotation: ( ) ( ) ( )1 2 1nQ Q Q Q−=   where each ( )iQ  is 
a complex rotation matrix. ( )iQ  modifies the first and second lines of B possibly 
creating a non-zero element in position ( )2,1  which will have to be cancelled 
by a complex rotation matrix 1Z  modifying only the first and the second col-
umn of ( )1Q B . Note ( )1B B=  and ( ) ( ) ( ) ( )2 1 1 1B Q B Z= . 

( )2B  is triangular superior. 
Let ( )kB  be the upper triangular, let ( )kQ  be the rotation matrix modifying 

only the kth and (k + 1)th row of ( )kB  possibly creating a non-zero element in 
position ( )1,k k+  which will have to be canceled by a matrix complex rotation 

( )kZ  only modifying the kth and (k + 1)th columns of ( ) ( )k kQ B .  
Let’s say ( )1kB +  is upper triangular, the process stops for 1k n= −  and we 

can write ( )nB QBZ B= = , ( ) ( ) ( )1 2 1nZ Z Z Z −= × × × . 
If B is invertible, it is obvious that Q realizes a unitary and triangular decom-

position of 1AB−  and *Z  a unitary decomposition of 1B A− , in fact:  
* 1 * 1 *Z B A Z B Q QA BQA− −= =   

B  and QA are upper triangular. We obtain the eigenvalues by calculating the 
ratios of diagonal elements of QA and B . 
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Nomenclature  

Greek letters 
θ: Azimuthal coordinate 
λ: Relaxation time of the fluid 
λ′ : delay time 
ν: Kinematic viscosity of the fluid 
ρ: Density of the fluid 
σ: Tensor of extra stress 
σ ′ : Disturbance of extra-stress  

sσ : Newtonian contribution of the disturbance of the extra-stress 
eσ : Elastic contribution of the disturbance of the extra-stress 

η: Dynamic viscosity of the fluid 
ϕ: Basis function 
ψ: Test function 
ω: delay parameter 
Latin letters 
Ci: imaginary part of the eigenvalue 
Cr: real part of the eigenvalue 
f: density force 
l: axial mode 
k0: Axial wave number 
n: Azimuthal mode 
r: radial coordinate 
R: radius of the cylinder  
Re: Reynolds number 
W0: Maximum speed of the base flow, it has for direction that of the axis of the 
cylinder  
We: Weissenberg’s number 
Wb: Axial velocity of the base flow 

s
bW : Newtonian contribution of basic flow velocity 
e

bW : Elastic contribution of basic flow velocity 
z: axial coordinate 
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