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Abstract 
Adopting a different method from the previous scholars, this article deduces 
the remaining 23 valid syllogisms just taking the syllogism AEE-4 as the basic 
axiom. The basic idea of this study is as follows: firstly, make full use of the 
trichotomy structure of categorical propositions to formalize categorical syl-
logisms. Then, taking advantage of the deductive rules in classical proposi-
tional logic and the basic facts in the generalized quantifier theory, we deduce 
the remaining 23 valid categorical syllogisms by taking just one syllogism (that 
is, AEE-4) as the basic axiom. This article not only reveals the reducible rela-
tions between the syllogism AEE-4 and the other 23 valid syllogisms, but also 
establishes a concise formal axiomatic system for categorical syllogistic logic. 
We hope that the results and methods will provide a good mathematical pa-
radigm for studying other kinds of syllogistic logics, and that the project will 
appeal to specialists in logic, linguistic semantics, computational semantics, 
cognitive science and artificial intelligence. 
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1. Introduction 

Syllogisms are important forms of reasoning in natural language and logic from 
Aristotle onwards. There are various syllogisms in natural language, such as cate-
gorical syllogisms (Moss, 2008), modal syllogisms (Zhang, 2020a, 2020b), genera-
lized syllogisms (Murinová & Novák, 2012), relational syllogisms (Pratt-Hartmann, 
2009, 2014), syllogisms with adjectives (Moss, 2011), and so on. Among them, 
categorical syllogisms have a long history of research and are widely used in hu-
man reasoning (Chen, 2000). Categorical syllogisms involve sentences of the fol-
lowing four forms: all xs are y, no xs are y, some xs are y, and not all xs are y. 
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This article focuses on the time-honored categorical syllogistic logic which has 
been discussed from different perspectives since Aristotle, for example by Łuka- 
siewicz (1957), Corcoran (1972), van Benthem (1984), Westerståhl (1989), Mar-
tin (1997), and Zhang (2016, 2020a, 2020b, 2021), and so on. The reason why 
categorical syllogistic logic is widely studied is that it is a common form of rea-
soning in natural languages.  

It is well known that merely 24 of 256 types of categorical syllogisms are valid 
(Chen, 2000). When deriving all of the other valid syllogisms, at least two valid syl-
logisms were used as basic axioms in previous studies, for example by Łukasiewicz 
(1957), Cai (1988), Zhang (2016, 2018) and Zhou et al. (2018). Adopting a different 
approach from the previous scholars, this article deduces the remaining 23 valid 
syllogisms taking just one syllogism (that is, AEE-4) as the basic axiom.  

2. Relevant Preliminary Knowledge 

In this article, Q represents one of the four Aristotelian quantifiers (that is, all, 
some, no, not all), x, y and z represent lexical variables, and D indicates the do-
main of lexical variables. In order to express concisely, D is omitted in contexts 
or without ambiguity.  

An Aristotelian syllogism contains three categorical propositions, two of which 
are premises and one is conclusion. Categorical propositions include the follow-
ing four types of propositions: A, E, I and O. The proposition A is a universal af-
firmative proposition, which means that all xs are y and can be formalized as 
all(x, y). The proposition E is a universal negative proposition, which means that 
no xs are y and can be denoted as no(x, y). The proposition I is a particular af-
firmative proposition, which means that some xs are y and can be formalized as 
some(x, y). The proposition O is a particular negative proposition, which means 
that not all xs are y and can be symbolized as not all(x, y). The definition of fig-
ures of syllogisms is as usual. The syllogism AEE-4 indicates the fourth figure of 
a syllogism which its major premise, minor premise and conclusion are respec-
tively the proposition A, E and E. And then the syllogism AEE-4 is denoted as 
all(y, z) ∧ no(z, x)→no(x, y). Other formal representations are similar.  

3. The Structure of Axiomatic System of Categorical  
Syllogisms 

This formalized axiom system is structured on the basis of the following four parts: 
initial symbols, formation rules for well-formed formulas, axioms, and rules of 
deduction.  

3.1. Primitive Symbols 

(1) lexical variables: x, y, z 
(2) quantifier: all 
(3) unary negative operator: ¬ 
(4) binary conjunction operator: ∧  
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(5) binary implication operator: → 
(6) brackets: (,) 

3.2. Formation Rules 

(1) If Q is a quantifier, x and y are lexical variables, then Q (x, y) is a well- 
formed formula.  

(2) If p is a well-formed formula, then ¬p is well-formed formula. 
(3) If p and q are well-formed formulas, then p∧q and p→q are well-formed 

formulas.  
(4) Only the formulas obtained by the above three rules are well-formed formulas. 

3.3. Basic Axioms 

(1) A1: if p is a valid formula in classical propositional logic, then ⊢p. 
(2) A2: ⊢all (y, z)∧no (z, x)→no (x, y) (that is, the syllogism AEE-4). 

3.4. Rules of Deduction 

The following deductive rules in classical propositional logic (c.f. Hamilton (1978)) 
are also applicable in categorical syllogistic logic. In the following rules, p, q, r 
and s are well-formed formulas. ⊢p means that p is provable. The other nota-
tions are similar. And the replacement rule is used by default in this article. 

(1) Rule 1 (antecedent interchange): From ⊢(p∧q→r) infer ⊢(q∧p→r). 
(2) Rule 2 (subsequent weakening): From ⊢(p∧q→r) and ⊢(r→s) infer 

⊢(p∧q→s). 
(3) Rule 3 (anti-syllogism): From ⊢(p∧q→r) infer ⊢(¬r∧p→¬q). 

3.5. Relevant Definitions 

(1) Definition of connective ↔: (p↔q) =def (p→q)∧(q←p) 
(2) Definition of inner negative quantifier: (Q¬)(x, y) =def Q (x, D−y) 
(3) Definition of outer negative quantifier: (¬Q)(x, y) =def It is not that Q(x, y) 
(4) Definition of dual quantifier: ¬Q¬(x, y) =def It is not that Q(x, D−y) 
The categorical syllogisms characterize the semantic and inferential properties 

of the four Aristotelian quantifiers (that is, all, no, some and not all). The reason 
why this article only takes one Aristotelian quantifier (i.e., all) as the initial quan-
tifier is that the other three Aristotelian quantifiers can be defined by this one. 
More specifically, no =def all¬, not all =def ¬all, and some =def ¬all¬ by the above 
definitions. 

3.6. Relevant Facts  

The following four facts are the basic facts in the generalized quantifier theory 
(c.f. Peters & Westerståhl (2006), and Zhang (2014)), which can be easily proved 
by using the above definitions, axioms, and rules of deduction.  

Fact 1 (inner negation): 
(1) ⊢all(x, y)↔no¬(x, y);    (2) ⊢no(x, y)↔all¬(x, y); 
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(3) ⊢some(x, y)↔not all¬(x, y);  (4) ⊢not all(x, y)↔some¬(x, y). 
Fact 2 (outer negation): 
(1) ⊢¬not all(x, y)↔all(x, y);    (2) ⊢¬all(x, y)↔not all(x, y); 
(3) ⊢¬no(x, y)↔some(x, y);    (4) ⊢¬some(x, y)↔no(x, y). 
Fact 3 (symmetry): 
(1) symmetry of some: ⊢some(x, y)↔some(y, x); (2) symmetry of no: ⊢no(x, 

y)↔no(y, x). 
Fact 4 (assertoric subalternations): 
(1) ⊢all(x, y)→some(x, y);      (2) ⊢no(x, y)→not all(x, y). 

4. The Reduction from the Syllogism AEE-4 to the Remaining  
23 Valid Syllogisms 

In the following theorem 1, AEE-4⇒AEE-2 means that the validity of the syllog-
ism AEE-2 can be deduced from the validity of the syllogism AEE-4. In other 
words, the two syllogisms are reducible. Other notations are similar. 

Theorem 1: The remaining 23 valid syllogisms can be deduced merely from 
the syllogism AEE-4. According to the order and steps of the proof, the follow-
ing can be obtained: 

(1) AEE-4⇒AEE-2 
(2) AEE-4⇒AEE-2⇒EAE-2 
(3) AEE-4⇒EAE-1 
(4) AEE-4⇒AEO-4 
(5) AEE-4⇒AEO-4⇒AEO-2 
(6) AEE-4⇒AEE-2⇒EAE-2⇒EAO-2 
(7) AEE-4⇒EAE-1⇒EAO-1 
(8) AEE-4⇒AEE-2⇒AII-1 
(9) AEE-4⇒AEE-2⇒AII-1⇒AII-3 
(10) AEE-4⇒AEE-2⇒AII-1⇒AII-3⇒IAI-3 
(11) AEE-4⇒AEE-2⇒AII-1⇒AII-3⇒IAI-3⇒IAI-4 
(12) AEE-4⇒AEO-4⇒AEO-2⇒EAO-3 
(13) AEE-4⇒AEO-4⇒AEO-2⇒EAO-3⇒EAO-4 
(14) AEE-4⇒AEO-4⇒AEO-2⇒AAI-3 
(15) AEE-4⇒EAE-1⇒AAA-1 
(16) AEE-4⇒EAE-1⇒AAA-1⇒AAI-1 
(17) AEE-4⇒EAE-1⇒AAA-1⇒AAI-1⇒AAI-4 
(18) AEE-4⇒EAE-1⇒AAA-1⇒OAO-3 
(19) AEE-4⇒EAE-1⇒AAA-1⇒OAO-3⇒AOO-2 
(20) AEE-4⇒AEE-2⇒AII-1⇒EIO-1 
(21) AEE-4⇒AEE-2⇒AII-1⇒EIO-1⇒EIO-3 
(22) AEE-4⇒AEE-2⇒AII-1⇒EIO-1⇒EIO-3⇒EIO-4 
(23) AEE-4⇒AEE-2⇒AII-1⇒EIO-1⇒EIO-3⇒EIO-4⇒EIO-2 
Proof:  
[1] ⊢all(y, z)∧no(z, x)→no(x, y)    (i.e. AEE-4, basic axiom A2)  
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[2] ⊢no(z, x)↔no(x, z)       (by (2) of Fact 3) 
[3] ⊢all(y, z)∧no(x, z)→no(x, y)    (i.e. AEE-2, by [1] and [2]) 
[4] ⊢all(y, z)∧no(x, z)→no(y, x)    (i.e. EAE-2, by [3] and (2) of 

          Fact 3 ) 
[5] ⊢all(y, z)∧no(z, x)→no(y, x)     (i.e. EAE-1, by [1] and (2) of 

          Fact 3) 
[6] ⊢no(x, y)→not all(x, y)     (by (2) of Fact 4) 
[7] ⊢all(y, z)∧no(z, x)→not all(x, y)    (i.e. AEO-4, by [1], [6] and 

          Rule 2  
[8] ⊢all(y, z)∧no(x, z)→not all(x, y)    (i.e. AEO-2, by [2] and [7]) 
[9] ⊢all(y, z)∧no(x, z)→not all(y, x)    (i.e. EAO-2, by [4], (2) of 

          Fact 4 and Rule 2) 
[10] ⊢all(y, z)∧no(z, x)→not all(y, x)   (i.e. EAO-1, by [2] and [9]) 
[11] ⊢¬no(x, y)∧all(y, z)→¬no(x, z)   (by [3] and Rule 3)  
[12] ⊢some(x, y)∧all(y, z)→some(x, z)   (i.e. AII-1, by [11] and (3) of 

          Fact 2) 
[13] ⊢some(y, x)∧all(y, z)→some(x, z)   (i.e. AII-3, by [12] and (1) of 

          Fact 3) 
[14] ⊢some(y, x)∧all(y, z)→some(z, x)   (i.e. AII-3, by [13] and (1) of 

          Fact 3) 
[15] ⊢some(x, y)∧all(y, z)→some(z, x)   (i.e. IAI-4, by [14] and (1) of 

          Fact 3) 
[16] ⊢¬not all(x, y)∧no(x, z)→¬all(y, z)   (by [8], Rule 1 and Rule 3) 
[17] ⊢no(x, z)∧all(x, y)→not all(y, z)   (i.e. EAO-3, by [16], (1) and 

          (2) of Fact 2, and Rule 1) 
[18] ⊢no(z, x)∧all(x, y)→not all(y, z)   (i.e. EAO-4, by [2] and [17]) 
[19] ⊢¬not all(y, x)∧all(y, z)→¬no(x, z)    (by [9] and Rule 3) 
[20] ⊢all(y, x)∧all(y, z)→some(x, z)    (i.e. AAI-3, by [19], (1) and 

          (3) of Fact 2)    
[21] ⊢all(y, z)∧all¬(z, x)→all¬(y, x)    (by [5] and (2) of Fact 1) 
[22] ⊢all(y, z)∧all(z, D−x)→all(y, D−x)   (by [21] and (2) of Definition 

          (3.5)) 
[23] ⊢all(y, z)∧all(z, x)→all(y, x)    (i.e. AAA-1, by [22]) 
[24] ⊢all(y, z)∧all(z, x)→some(y, x)    (i.e. AAI-1, by [23], (1) of 

          Fact 4 and Rule 2) 
[25] ⊢all(y, z)∧all(z, x)→some(x, y)    (i.e. AAI-4, by [24] and (1) of 

          Fact 3) 
[26] ⊢¬all(y, x)∧all(y, z)→¬all(z, x)    (by [23] and Rule 3) 
[27] ⊢not all(y, x)∧all(y, z)→not all(z, x)   (i.e. OAO-3, by [26] and (2) 

          of Fact 2) 
[28] ⊢¬not all(z, x)∧not all(y, x)→¬all(y, z)  (by [27] and Rule 3) 
[29] ⊢all(z, x)∧not all(y, x)→not all(y, z)    (i.e. AOO-2, by [28], (1) and 

          (2) of Fact 2) 
[30] ⊢some(x, y)∧no¬(y, z)→not all¬(x, z)  (by [12], (1) and (3) of Fact 1) 

https://doi.org/10.4236/ojpp.2023.131006


L. Wei 
 

 

DOI: 10.4236/ojpp.2023.131006 102 Open Journal of Philosophy 
 

[31] ⊢no(y, D−z)∧some(x, y)→not all(x, D−z)  (by [30] and (2) of Definition 
          (3.5)) 

[32] ⊢no(y, z)∧some(x, y)→not all(x, z)    (i.e. EIO-1, by [31]) 
[33] ⊢no(y, z)∧some(y, x)→not all(x, z)    (i.e. EIO-3, by [32] and (1) of 

          Fact 3) 
[34] ⊢no(z, y)∧some(y, x)→not all(x, z)    (i.e. EIO-4, by [33] and (2) of 

          Fact 3) 
[35] ⊢no(z, y)∧some(x, y)→not all(x, z)    (i.e. EIO-2, by [34] and (1) of 

          Fact 3) 

5. Conclusion and Future Work 

The basic idea of this study is as follows: Firstly, make full use of the trichotomy 
structure of categorical proposition to formalize categorical syllogisms. Then, tak-
ing advantage of the deductive rules in classical propositional logic and the basic 
facts in the generalized quantifier theory, we can deduce the other 23 valid cate-
gorical syllogisms by taking just one syllogism (that is, AEE-4) as the basic axiom. 
This article not only reveals the reducible relations between the syllogism AEE-4 
and the other 23 valid syllogisms, but also establishes a concise formal axiomatic 
system for categorical syllogistic logic. The research methods and results are con-
cise, clear, and enlightening. 

The basic steps for computer to process a statement in natural language are as 
follows: first, formalize the statement; then give the algorithm of its formal ex-
pression; finally, compile the program according to the algorithm. In other words, 
formalizing sentences in natural language is the first step of natural language in-
formation processing. This paper makes a formal study of categorical syllogisms 
from the perspective of mathematical structuralism and generalized quantifier 
theory. This study not only provides a universal mathematical paradigm for stud-
ying other kinds of syllogisms, but also provides theoretical support for natural 
language information processing, knowledge representation and knowledge rea-
soning in computer science. 

How to integrate the research results of generalized quantifier theory and ca-
tegorical syllogistic logic to further improve their role in the intersection of logic, 
natural language processing and computer science, and how to make the best of 
the spillover effects in theoretical research to deal with practical problems and 
promote computer context awareness and knowledge reasoning? These issues 
need to be explored in depth.  
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