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ABSTRACT

This work shows that the stochastic generalization of the quantum hydrodynamic analogy
(QHA) has its corresponding stochastic Schrödinger equation (SSE) as similarly happens
for the deterministic limit. The SSE owns an imaginary random noise that has a finite
correlation distance, so that when the physical length of the problem is much smaller than
it, the SSE converges to the standard Schrödinger equation comprehending it. The model
shows that in non-linear (weakly bounded) systems, the term responsible of the non-local
interaction in the SSE may have a finite range of efficacy maintaining its non-local effect on
a finite distance. A non-linear SSE that describes the related large-scale classical
dynamics is derived. The work also shows that at the edge between the quantum and the
classical regime the SSE can lead to the semi-empirical Gross-Pitaevskii equation.

Keywords: Quantum hydrodynamic analogy; quantum to classical transition; quantum
decoherence; quantum dissipation; noise suppression; open quantum systems;
quantum dispersive phenomena; quantum irreversibility.

NOMENCLATURE

n : squared wave function modulus l-3
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S : action of the system m-1 l-2 t
m : mass of structureless particles m
 : Plank’s constant m l2 t-1

c : light speed l t-1

k : Boltzmann’s constant m l2 t-2/°K
 : Noise amplitude °K
H : Hamiltonian of the system m l2 t-2

V : potential energy m l2 t-2

Vqu : quantum potential energy m l2 t-2

 : Gaussian noise of WFMS l-3 t-1
c : correlation length of squared wave function modulus fluctuations l
L : range of interaction of  non-local quantum interaction l
G() : dimensionless correlation function (shape) of WFMS fluctuations pure number
 : WFMS mobility form factor m-1 t  l-6

 = WFMS mobility constant m-1 t

1. INTRODUCTION

By using the stochastic generalization of the quantum hydrodynamic analogy (QHA) [1-2]
that describes how fluctuations influence the quantum non-locality and possibly lead to the
large-scale classical evolution, we derive here the corresponding stochastic Schrödinger
equation (SSE) able to describe the classical to quantum transition and to lead to the
classical evolution.

The motivation of using the QHA approach to derive the SSE relies in the fact that it owns a
classical-like structure that allows the achievement of a comprehensive understanding of
quantum and classical phenomena. The QHA well applies to problems whose scale is larger
than that one of small atoms, which are dynamically submitted to environmental fluctuations.
This is confirmed by its success in the description of chromophore-protein complexes and
semi-conducting polymers, dispersive effects in semiconductors, multiple tunneling,
mesocopic and quantum Brownian oscillators, critical phenomena, stochastic Bose-Einstain
condensation and in the theoretical regularization procedure of quantum field [3-13]. The
QHA has resulted useful in the numerical solution of the time-dependent Schrödinger
equation [14] and has led to a number of papers and textbooks bringing original
contributions to the comprehension of quantum dynamics [15-18]. Compared to others
classical-like approaches (e.g., the stochastic quantization procedure of Nelson [19] and the
mechanics given by Bohm [20]) the QHA owns a well defined correspondence with the
Schrödinger equation and is free from problems such as the undefined variables of the
Bohmian mechanics [21] or the unclear relation between the statistical and the quantum
fluctuations as in the Nelson theory.

The present work brings the unitary description of the stochastic quantum hydrodynamic
analogy (SQHA) into the Schrödinger approach. The derived SSE owns a theoretical
connection with the classical non-linear Schrödinger equation and the Gross-Pitaevskii one
showing to be usefully applicable to the problems of quantum-to-classical transition [13],
quantum de-coherence [22-26] and quantum treatment of chaos and irreversibility [22].
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2. THEORY: THE SQHA EQUATION OF MOTION

When the noise is a stochastic function of the space, in the SQHA the motion equation is
described by the stochastic partial differential equation (SPDE) for the spatial density of
number of particles n (i.e., the wave function modulus squared (WFMS)), that reads [2]
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where  is the amplitude of the spatially distributed noise  , )q(V represents the

Hamiltonian potential and )(quV n is the so-called (non-local) quantum potential [15] that

reads
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Moreover, )(G  is the dimensionless shape of the correlation function of the noise .

The condition that the fluctuations of the quantum potential )(quV n do not diverge, as 

goes to zero (so that the deterministic limit can be warranted) leads to a )(G  owing the
form [2].
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This result is a direct consequence of the quantum potential form that owns a membrane
elastic-like energy, where higher curvature of the WFMS leads to higher energy. White
fluctuations of the WFMS that bring to a zero curvature wrinkles of the WFMS (and hence to
an infinite quantum potential energy) are not allowed. The fact that, in order to maintain the
system energy finite, independent fluctuations on smaller and smaller distance are
progressively suppressed, leads (in the small noise limit) to the existence of a correlation
distance (let’s name it c ) for the noise.
Hence, (2) reads [2]
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and where  is the WFMS mobility form factor that depends by the specificity of the
considered system [2].

2.1 Schrödinger Equation from the SQHA

For  = 0 equations (1-5), with the identities
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that for the complex variable
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For   0 the stochastic equations (1-5) can be obtained by the following system of
differential equations
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which for the complex variable (15) are equivalent to the SSE
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2.2 Large-Scale Local Non-Linear Schrödinger Equation

In addition to the noise correlation function (7), in the large-distance limit, it is also important

to know the behavior of the quantum force quqqu Vp 


.

The relevance of the force generated by the quantum potential at large distance can be
evaluated by the convergence of the integral [2]
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can evaluate the quantum potential range of interaction.

Faster the Hamiltonian potential grows, more localized is the WFMS and hence stronger is
the quantum potential. For the linear interaction, the Gaussian-type eigenstates leads to a
quadratic quantum potential and, hence, to a linear quantum force, so that

ttancons|Vq|lim quq
|q|




1 and L diverges. Therefore, in order to have L finite (so that

the large-scale classical limit can be achieved) we have to deal with a system of particles
interacting by a weaker than the linear interaction.

In the following, we derive the local limiting dynamics for the SSE with c  L << L ,

where L is the physical length of the system.
Given the condition L << L so that it holds
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and c << L , by which (11) reads [2]
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where, p is a small fluctuation of the momentum, since the convergence to the
deterministic limit,  warranted by (7), leads to
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2S

2

1
S )(

m
V q)q(t  (25)

),t,q((q,t)q(q,t)q(q,t)q(q,t)t ASA
m

SA
m

A 
 


12

2

11
(26)

Where S given by (23) converges to the classical value clS and where

)()(
k

,lim
c

)t,q()t,q(
/ c




  


 

2
0L

(27)

For the wave function (q,t) the classically stochastic equations of motion (25-26) can be

cast in a non-linear Schrödinger equation (NLSE) that reads:
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2.3 Semi-Empirical Non-Linear Schrödinger Equation for Quantum-To-
Classical Transition

Actually, the exact equation is given by (19) while the former one (28) is just a limiting one
and the formal transformation between them is intrinsic. Alternatively to (19), in order to
describe phenomena at the edge between the classical and the quantum behavior, a semi-
empirical equation for passing from (19) to (28) could be more manageable. By considering
that the when the physical length of the system L is much smaller than the quantum non-
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locality length L , the system is quantum, while when L is very small compared to L is
classic, it is possible to write
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where  (a dimensionless quantum-to-classical parameter) at first order in a series
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It is interesting to note that Equation (29) for pseudo-Gaussian states that have the large-
distance hyperbolic behavior
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such as in the 4He dimer [28], equation (29) acquires the stochastic form of the Gross-
Pitaevskii one [29]
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3. DISCUSSION AND CONCLUSIONS

Being ),t,q( 
 a random process with a finite correlation distance c , when the physical

length of the problem is much smaller than it, (19) converges to the standard Schrödinger
equation comprehending it.

The stochastic generalization (19) is able to describe the classical states since, in non-linear

(weakly bounded) systems; the term ||
|| q 


 2 (that brings the non-local quantum

interaction) may become negligibly small in problems whose scale is much larger than its
interaction distance L . The following large-scale limiting classical dynamics is described by
the NLSE (28).
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The approximated NLSE describing dynamics near the quantum-to-classical transition (29),
where the non-local quantum interaction term is progressively subtracted (by the factor  )
for hyperbolic large-distance wave function, such as that one of the 4He dimer, leads to the
Gross-Pitaevskii equation that is well experimentally verified.

From the general point of view the SSE (19) can be helpful in describing at larger extent
open quantum systems where the environmental fluctuations and the classical effects start
to be relevant.
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