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ABSTRACT 

New modified Adomian decomposition method is proposed for the solution of the generalized fifth-order Korteweg-de 
Vries (GFKdV) equation. The numerical solutions are compared with the standard Adomian decomposition method and 
the exact solutions. The results are demonstrated which confirm the efficiency and applicability of the method. 
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1. Introduction 

The fifth-order (or generalized) KdV is the essential a 
model foe several physical phenomena including shal- 
low-water waves near critical value of surface tension 
and waves in nonlinear LC circuit with mutual induc- 
tance between neighbouring inductors [1]. Although no 
general solution is known, the exact solution of the fifth 
order KdV equation has been found for the special case 
of solitary waves in [2]. In general, the fifth order KdV 
need to be solved numerically. Commonly used numeri- 
cal methods to approximate the solutions of (gfKdV) 
include finite difference methods, collection methods and 
Galerkin methods. Kawahara [3] investigated the steady 
solutions of this equation on the basis of numerical cal- 
culations. Boyd [4] and Haupt and Boyd [5] reduced this 
equation to an ordinary differential equation and then a 
variety of analyticl and numerical methods are developed. 
The numerical methodes are based on Newton-Kan- 
torovich pseudo-spectral method and Newton-Kan- 
torovich Galerkin method. In [6] K. Djidjeli et al. pro- 
posed finite deference schemes based on a predictor - 
corrector algorithm and a linearized implicit method for 
the third and fifth order KdV equations. 

However, some of these methods are not easy to use 
and sometimes require tedious work and calculation [7, 
8]. In recent years, Adomian decomposition methods 
(ADM) [9] have emerged as a powerful tool for a wide 
class of nonlinear equation [10]. G. Adomian in [11] ap- 
plied his method to the 5th order KdV equation. In [12, 
13], D. Kaya calculated the explicit and numerical solu- 
tions of some fifth-order KdV equation by decomposi- 
tion method and Kaya and El-Sayed in [14] proved the 
convergence of (ADM) applied to (gfKdV) equation. 

A comparative study between (ADM) and Crank 
Nicholas method presented in [15]. (ADM) has led to 
several modifications on the method made by various 
researches in order to improve the accuracy or expansion 
of the application of the original method. Wazwaz [16] 
presented a reliable modification of the Adomian de- 
composition method. 

In 2001, Wazwaz presented another type of modifica- 
tion [17] to the (ADM). Wazwaz modifications arises in 
the initial definition of the operator when applying the 
(ADM) to the nonlinear equation. 

To the best of our knowledge, no attempt is made re- 
garding the solution of generalized fifth order KdV equa- 
tions by using modified decomposition method. So our 
main aim in this paper is used the modification ADM to 
solve the five particular class of the (gfKdV) equations. 
We generalized an appropriate Adomian’s polynomials 
for (gfKdV) equation will be handle more easily, quickly, 
and elegantly by implementing the new modified (ADM) 
rather than traditional methods for the exact solution of 
which is to be obtained subject to initial condition. 

2. Fifth-Order KdV Equations 

The well-known fifth-order KdV (fKdV) equations can 
be shown in the form 

2 0t x x xx xxx xxxxxu au u bu u cuu du        (1) 

where a, b, c and d are nonzeros and real parameters, and 
 ,u u x t  is a sufficiently smooth function. The (fKdV) 

is an important mathematical model with wide applica- 
tions in quantum mechanics and nonlinear optics. 

Typical examples widely used in various fields such as 
solid state physics, plasma physics, fluid physics and 
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quantum field theory. A variety of the (fKdV) equations 
can be developed by changing the real values of the pa- 
rameters a, b and c [18]. the derivation of these fifth- 
order forms are derived specific bilinear forms of the 
so-called Hirota’s D-operators. However, five will known 
forms of the (fKdV) that are of particular interest in the 
literature. These forms are: 

1) The Sawada-Kotera (SK) equation is given by [19] 
245 15 15 0t x x xx xxx xxxxxu u u u u uu u    







0

  (2) 

2) The Caudrey-Dodd-Gibbon (CDG) equation is given 
by [20]  

2180 30 30 0t x x xx xxx xxxxxu u u u u uu u       (3) 

3) The Lax equations [21] 
230 30 10 0t x x xx xxx xxxxxu u u u u uu u      (4) 

4) The Kaup-Kuperschmidt (KK) equation [22,23] 
220 25 10 0t x x xx xxx xxxxxu u u u u uu u      (5) 

5) The Ito equation [24]  
22 6 3t x x xx xxx xxxxxu u u u u uu u          (6) 

3. The Method of Soultion 

3.1. Adomian Decomposition Method 

In this section, we give outline and implement Adomian 
decomposition method for nonlinear equations to obtain 
analytic and approximate solutions which are obtained in 
a rapidly convergent series with elegantly computable 
components by this method. The Adomian approxima- 
tion series converge quickly. In general, convergence re- 
gions of the series are small. Now we outline of the me- 
thod here in order to obtain the solutions using (ADM), 
consider the fifth-order KdV Equation (1) in an operator 
form 

  0,t u u u xL u aK bM cN dL u        (7) 

where the notations 2 ,u xK u u  ,u x xxM u u  and 
.u xxN uu x  By symbolizing the nonlinear term, respec-  

tively. The notation tL
t




  and 
5

5xL
x




  symbolize  

the linear differential operators. Assuming the inverse of 
operator  exists and it can conveniently be taken as 
the definite integral with respect to  from 0 to , i.e., 

1
tL

t t

 1

0
d

t

tL   t



               (8) 

Thus, applying the inverse operator  to (7) yields; 1
tL

    
   

1 1 1

1 1 0,

t t t u t u

t u t x

L L u aL K bL M

cL N dL L u

  

 

  

  
   (9) 

Therefore, it follows that 

   
       1 1 1 1

, ,0

,t u t u t u t x

u x t u x

aL K bL M cL N dL L u   



    
 (10) 

Since initial value is known and we decompose the 
unknown function  ,u x t  as a sum of components de- 
fined by the decomposition series 

   
0

, n
n

u x t u x t




  , ,             (11) 

with  identified as 0u  ,0u x
,

. 
The nonlinear terms uK  uM  and u  can be de- 

composed into infinite series of polynomial given by 
N

2

0

,u x
n

nK u u A




             (12) 

0

,u x xx n
n

M u u B




            (13) 

0

,u xxxx n
n

N uu C




            (14) 

,nA   and  are the so-called Adomian poly- 
nomials of  defined by 

,nB nC
,0 1, , .nu u u

=1 0

1 d
, 0,1,2, .  (15) 

! d

n
k

n kn
k

P u n
n 








      
  
 

n

Substituting (11-14) into (10) gives rise to 

 1 1 1 1
1 ,

1.
n t n t n t n t xu aL A bL B cL C dL L u

n

   
     


 (16) 

The solution  ,u x t  must satisfy the requirements 
imposed by the initial conditions. Based on the (ADM), 
we constructed the solution  as  ,u x t

 

   
0

, ,lim

where , , , 0.

n
n

n

n k
k

u x t

x t u x t n











 
   (17) 

The decomposition method provides a reliable techni- 
que that requires less work if we compared with the 
traditional techniques. 

3.2. New Modified Adomian Decomposition 
Method 

In the new modification by Wazwaz [17], we can replace 
the process of identified 0u  as  by dividing  ,0u x 
 ,0u x  by a series of infinite components. We therefore 

suggest that 

   0 0
0

, n

n

u x t u x




  .            (18) 

A new recursive relationship expressed in the form 
0

0 0u u  
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 1 1 1 1 1
1 0 ,

1.

n
n t n t n t n tu u aL A bL B cL C dL L u

n

    
     


x n (19) 

We can observe that algorithm (19) reduces the num- 
ber of terms involved in each component, and hence the 
size of calculations is minimized compared to the stan- 
dard (ADM) only. Moreover this reduction of terms in 
each component facilitates the construction of Adomian 
polynomials for nonlinear operators. the new modifi- 
cation overcomes the difficulty of decomposing  ,0u x  
and introduces an efficient algorithm that improves the 
performance of the standard (ADM). 

4. Numerical Experiments 

In this section, we consider some (gfKdV) equations for 
numerical comparisons based on the new modifications 
of (ADM). In this paper, we illustrate how the appro- 
ximate solutions of the (gfKdV) equations are close to 
exact solutions. 

4.1. Example (1): (Sawada-Kotera Equation) 

we consider the (S-K) Equation [25], with initial condi- 
tion is given by 

    2 2
0 0, 2 sech .u x t k k x x 



     (20) 

and the exact solution 

    2 2 4
0, 2 sech 16 .u x t k k x k t x   (21) 

Table 1 shows the difference of the analytical solution 
and numerical solution of the absolute errors only for 5 
iterative. 

4.2. Example (2): (Caudrcy-Dodd-Gbbon 
(C-D-G) Equation) 

we consider the (C-D-G) equation, with initial condition 

 
 

2

2

e
,0 .

1 e

kx

kx

k
u x 


           (22) 

and the exact solution 

 
  

  

4

4

2

2

e
,

1 e

k x k t

k x k t

k
u x t






 
 

 

.         (23) 

Table 2 shows the numerical results for example (2) 
for . 0.01k 

4.3. Example (3): (The Lax Equation) 

we consider Lax’s fifth order KdV equation with the 

initial condition: 

     2 2
0,0 2 2 3tanh .u x k k x x      (24) 

and the exact solution 

     2 2 4
0, 2 2 3tanh 56u x t k k x k t x    .  (25) 

Table 3 shows the numerical results for example (3) 
for 0.01k  , 0 0.0x  . 

4.4. Example (4): (Kaup-Kuperschmidt (K-K) 
Equation) 

We consider the (K-K) equation with the initial condition 

 
2 2

22

24 e 4e e 16
,0 .

16e e 16

kx kx kx

kx kx

k
u x

   
   

   (26) 

and the exact solution 

 
 

5 5

55

2 2

2
2

24 e 4e e 16
, .

16e e 16

kx t kx k t kx k t

kx k tkx k t

k
u x t

  



   
    

 (27) 

Table 4 shows the numerical results for example (4) 
for 0.01k  . 

4.5. Example (5): (Ito Equation) 

we consider the Ito equation with the initial condition 

   2 2 2,0 20 30 tanch .u x k k kx        (28) 

and the exact solution 

  2

2 2 4
0

, 20

30 tanch 96 .

u x t k

k kx k x



   
  (29) 

Table 5 shows the numerical results for example (5) 
for 0.01k   and 0 0.0x  . 

5. Conclusions and Remarks 

In this work, we proposed new modification of Adomian 
decomposition method. We solved the five well known 
forms of the (fKdV) equation with initial conditions. The 
method has been shown to computationally efficient in 
these examples that are important to researchers in ap- 
plied sciences. The obtained results in examples indicted 
that the new modification of (ADM) was feasible and 
effective. The method overcomes the difficulties arising 
in the modified decomposition method established in 
[16]. 

The results show that the presented method is power- 
ful mathematical tool for finding good approximate solu- 
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Table 1. Absolute error between the exact solution and approximation solution for k = 0.01 and x0 = 0.0. 

t/x 0.2 0.4 0.6 0.8 1.0 5.0 

2 1.54499 × 10–18 4.52654 × 10–18 1.25496 × 10–17 2.81893 × 10–17 5.40204 × 10–17 6.6435 × 10–15 

4 5.36680 × 10–18 1.12757 × 10–17 2.7349 × 10–17 5.87095 × 10–17 1.10345 × 10–16 1.32874 × 10–14 

6 1.13841 × 10–17 2.02746 × 10–17 4.44252 × 10–17 9.14253 × 10–17 1.68892 × 10–16 1.99336 × 10–14 

8 1.97054 × 10–17 3.15232 × 10–17 6.37511 × 10–17 1.26364 × 10–16 2.29688 × 10–16 2.6582 × 10–14 

10 3.02492 × 10–17 4.50486 × 10–17 8.52725 × 10–17 1.63633 × 10–16 2.92707 × 10–16 3.32327 × 10–14 

 
Table 2. Absolute error between the exact solution and approximation solution for k = 0.01 and x0 = 0.0. 

t/x 0.2 0.4 0.6 0.8 1.0 5.0 

2 1.96921 × 10–21 3.11957 × 10–21 3.63542 × 10–21 1.7893 × 10–20 2.62474 × 10–20 2.48025 × 10–18 

4 3.87141 × 10–21 2.70138 × 10–21 9.52285 × 10–21 2.01336 × 10–20 5.33583 × 10–20 5.70681 × 10–18 

6 7.39739 × 10–21 5.50257 × 10–21 2.20177 × 10–20 3.91461 × 10–20 7.69124 × 10–20 8.93996 × 10–18 

8 1.89429 × 10–21 4.74685 × 10–21 2.75676 × 10–20 5.79897 × 10–20 9.69092 × 10–20 1.21797 × 10–17 

10 6.82819 × 10–21 7.21049 × 10–21 2.61724 × 10–20 5.63358 × 10–20 1.20126 × 10–19 1.54092 × 10–17 

 
Table 3. The exact and approximation solution of Lax equation for k = 0.01. 

t/x 0.2 0.4 0.6 0.8 1.0 5.0 

2 5.76197 × 10–14 1.15211 × 10–13 1.72788 × 10–13 2.30342 × 10–13 2.87867 × 10–13 1.42104 × 10–12 

4 1.15281 × 10–13 2.30464 × 10–13 3.45618 × 10–13 4.60727 × 10–13 5.75777 × 10–13 2.84213 × 10–12 

6 1.72985 × 10–13 3.45759 × 10–13 5.18489 × 10–13 6.91153 × 10–13 8.63729 × 10–13 4.26326 × 10–12 

8 2.3073 × 10–13 4.61096 × 10–13 6.91403 × 10–13 9.21621 × 10–13 1.15172 × 10–12 5.68444 × 10–12 

10 2.88518 × 10–13 5.76475 × 10–13 8.64358 × 10–13 1.15213 × 10–12 1.43976 × 10–12 7.10566 × 10–12 

 
Table 4. Absolute error between the exact solution and approximation solution for k = 0.01 and x0 = 0.0. 

t/x 0.2 0.4 0.6 0.8 1.0 5.0 

2 1.46896 × 10–16 7.86155 × 10–17 1.0355 × 10–17 5.77728 × 10–17 1.25763 × 10–16 2.24215 × 10–15 

4 2.9378 × 10–16 1.57193 × 10–16 2.07239 × 10–17 1.15638 × 10–16 2.51752 × 10–16 7.63093 × 10–16 

6 4.40678 × 10–16 2.35791 × 10–16 3.10725 × 10–17 1.73475 × 10–16 3.77733 × 10–16 7.15916 × 10–16 

8 5.87582 × 10–16 3.14383 × 10–16 4.14144 × 10–17 2.31306 × 10–16 5.03728 × 10–16 2.19495 × 10–15 

10 7.34466 × 10–16 3.92994 × 10–16 5.17698 × 10–17 2.89164 × 10–16 6.29737 × 10–16 3.67398 × 10–15 

 
Table 5. Absolute error between the exact solution and approximation solution for k = 0.01 and x0 = 0.0. 

t/x 0.2 0.4 0.6 0.8 1.0 5.0 

2 1.40995 × 10–16 1.41060 × 10–16 1.41178 × 10–16 1.4137 × 10–16 1.4168 × 10–16 7.17504 × 10–16 

4 5.63981 × 10–16 5.64238 × 10–16 5.64685 × 10–16 5.65365 × 10–16 5.66365 × 10–16 1.74347 × 10–15 

6 1.26896 × 10–15 1.26953 × 10–15 1.27052 × 10–15 1.27199 × 10–15 1.27405 × 10–15 3.07794 × 10–15 

8 2.25592 × 10–15 2.25695 × 10–15 2.25868 × 10–15 2.26123 × 10–15 2.26475 × 10–15 4.7209 × 10–15 

10 3.52488 × 10–15 3.52648 × 10–15 3.52918 × 10–15 3.5331 × 10–15 3.53845 × 10–15 6.67236 × 10–15 
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Figure 1. The ct and the approximation solution of s-k 
equation for t = 10 and k = 0.01. 
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Figure 2. The exact and the approximation solution of 
C-D-G equation  t = 10 and k = 0.01.  for
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Figure 3. The exact and the approximation solution of Lax 
equation for t 0 and k = 0.01.  = 1
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Figure 4. The exact and the approximation solution of K-K 
equation for t 0 and k = 0.01. = 1
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Figure 5. The exact and the approximation solution of Ito 
equation for t = 10 and k = 0.01. 

tions of (gfKdV) equation with initial conditions and re- 
sults are found to be in good agreement with the exact 
solution as shown from Figures 1-5. In addition, no lin- 
earization or perturbation is required by the method. 
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