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Abstract

A predictive estimator for estimating the parameter of binomial distribution is suggested. This
estimator aims to maximize the expectation of expected log-likelihood. The results given by
this estimator are superior to those given by the maximum likelihood estimator in terms of the

predictions when a little prior knowledge about the parameter is available.
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1 Introduction

The maximum likelihood estimator and the unbiased estimator are common tools, which are used
to estimate the parameters of a probability density function from data. However, the maximum
likelihood estimator is known to give unacceptable estimates in some situations (e.g., page 343 in
[1]). The unbiased estimator does not exist under certain conditions and, even if it exists, it may
not be invariant (page 415 in [1]). In this paper, I propose a predictive estimator for estimating the
parameter of binomial distribution. The estimator aims to maximize the expectation of the expected
log-likelihood, and hereafter is called the “predictive estimator”. Because nothing is known about
the form of the predictive estimator, I assume a very simple form. Therefore, predictive estimators
with other forms may yield better results.
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2 Predictive Estimator for Binomial Distribution

The probability density function of the binomial distribution is written as
n\ . N
f(&) = <£>p5(1 -p)"" (£=0,1,2,...,n). (2.1)

where p is the true value of the parameter and ¢ is the variable. The expectation of Eq.(2.1) can
be written as

D Ef(©) =np. (2.2)
=0

Assuming that X is a random variable that obeys the probability density function f(£) and its
realization (i.e., data) is called x, then the log-likelihood (I(p|z)) of the data is given as

l(p|lz n
% = log( <x>) + zlog(p) 4+ (n — z)log(1 — p). (2.3)
To derive the p that maximizes the above value, the value is differentiated with respect to p and
set equal to 0 as follows:
= - =0. 2.4
b 1 (2.4)
Therefore, the maximum likelihood estimator (p) is obtained from the data at hand (x) as

x

p= —. 2.5

b= (2.5)

Next, future data are named {z;} (1 < i < m); future data comes from another sampling than that

for data at hand (x). The log-likelihood (I(p|{z;})) of p in the light of this data is represented as

(p\{a: Zlog < af) ixllog ! i(n—mf)bg(l—ﬁ)- (2.6)

i=1

The p that maximizes this value is termed p* and is depicted as

Ak Zn 1 1’.1
= === 2.7
b p—- (2.7)
Because the number of future data is infinite, m is set to be infinite. In this situation, the value of
p* is called pj, and Eq.(2.2) leads to

Ak

£, af
Poo = lim i=1%
m—r 00 mn

= (2.8)

Here, the maximum likelihood estimator for an infinite number of future data is the true value of
the parameter (i.e., p). Substitution of Eq.(2.8) into Eq.(2.6) yields

m;w l(f’|;{j:}) :W}E»nooﬁzlog < *>)+nplog( p) + n(1l — p)log(1l — p). (2.9)

lim
i=1 z

When the above equation is taken into account and the log-likelihood of p for an infinite number
of future data is named {*(p), we have

m—o0 M,

"(p) = lim — Zlog < ) + nplog(p) + n(1 — p)log(1 — p). (2.10)
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Because the first term of the right-hand side does not affect derivation of p, this term can be omitted
and the log-likelihood, named I*'(p)), can be written as

I"'(p) = nplog(p) +n(1 — p)log(L — p). (2.11)

The p given by Eq.(2.5) may not be the optimal estimator in the light of future data; therefore, the
optimal estimator for future data (i.e., the predictive estimator), here called p*, can be represented
as

At i
= 2.12
P n+a’ (2.12)

where a is a constant. Hence, the log-likelihood of p* for an infinite number of future data is

(") = nplog | —— 1—p)log(1— —2—). 2.13
(") np0g<n+a +n(1 — p)log ta (2.13)
By differentiating this equation with respect to a and setting it equal to 0, we obtain
x
a=—=—n. 2.14
7 (2.14)

The resulting equation can be written as
(2.15)

bS]
Il
™

which is an obvious relationship.

Next, let us consider the averaged value of I*(p") (i.e., expectation of I*(p1)), which is given by
sampling x infinite times. This expectation is represented as

E.[I" ()] E, [nﬁlog(%ﬂ) +n(l- ﬁ)log(l - i a)}

sec (nitos(5) + 1 - piox(1- 5, (Z)ﬁ(l )

St <Z>ﬁ5(1 —p)n-¢

(2.16)

The range of summation of the right-hand side of the second line of this equation is from r = 1
through r» = n — 1 instead of r = 0 through » = n. This is because the possibility that = takes the
value of 0 or n has to be excluded. As a result of this measure, the expectation is standardized
by the constant (i.e., the denominator). Moreover, if a is set to be negative, the argument of

log(l — %) can be negative; hence, a has to be 0 or positive. It should be noted that the type
n+a

of expectation used in Eq.(2.16) is found in the derivation of AIC (Akaike’s information criterion).
For example, Eg(x,) on page 55 in [2] is a similar expectation.

When a = 0 is assumed in Eq.(2.16), it yields the expectation of expected log-likelihood. Therefore,
if the value of Eq.(2.16) for a # 0 is larger than its value for a = 0, an a that holds a # 0 will give
a better estimator. Then, Aly(a) is defined as

Alg(a) = E:[I"(")] - E[1” ()]
= E, [nﬁlog(%ﬂ) +n(l —ﬁ)log(l — nia)}
—E, [nﬁlog(%) +n(l— ﬁ)log(l - %)] (2.17)
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Figure 1: Al¢(a) given by Eq.(2.17) when n = 5. p = 0.1 (top left); p = 0.3 (top
right); p = 0.5 (bottom left); and p = 0.7 (bottom right).

This Als(a) is calculated using Eq.(2.16). When Als(a) is calculated assuming n = 5, p =
{0.1,0.3,0.5,0.7}, and a = {0.1,0.2,0.3, ..., 2.0} the results are shown in Figurel. When n = 10 is
assumed and the other parameters remain the same as those used in Figure 1, the results are shown
in Figure2. For example, if we know from the phenomenon generating the data that n = 10 and
0.1 < p <0.5, a should be set at 0 to 1.5. In this situation, when a is set at 0, it gives the maximum
likelihood estimator. Hence, when a = 0.5 or a = 1 is used for example, the averaged expectation of
expected log-likelihood yielded by repeated samplings is larger than the averaged expectation given
by the maximum likelihood estimator (Figure 2), which indicates that this predictive estimator is
a more desirable estimator. To optimize the value of a exactly, detailed prior knowledge about the
parameters or settings of the data are required.

Next, we consider the situation when the probability of success obeys the binomial distribution and
the probability of failure also obeys the binomial distribution. Assuming, ps is the probability of
success, py is the probability of failure, and ps +ps = 1. If we know that n = 10 and 0.1 < p, < 0.5,
then setting a in (2.12) at 0.5 or 1 gives a larger value of the expectation of expected log-likelihood
than is given by the maximum likelihood estimator. By contrast, because we know 0.5 < py < 0.9,
setting of a in Eq.(2.12) at 0 (i.e., use of the maximum likelihood estimator) is a reasonable choice,
and pi + ﬁjf # 1. Conventionally, we believe that when ps + py = 1 holds, ps + py = 1 is satisfied.
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Figure 2: Alf(a) given by Eq.(2.17) when n = 10. p = 0.1 (top left); p = 0.3 (top
right); p = 0.5 (bottom left); and p = 0.7 (bottom right).

This inference is not obviously valid. When the purpose of the estimation is maximization of the
expectation of expected log-likelihood, this relationship is no longer satisfied.

3 Conclusions

Bayes estimator ([3-8]) is conventionally the most common tool for using prior knowledge to estimate
parameters of a probability density function. The predictive estimator method proposed here uses
prior knowledge such as 0.1 < ps < 0.5 to make the expectation of expected log-likelihood larger
than that given by the maximum likelihood estimator. In the case of the predictive estimator for

1
the exponential distribution, the estimator given by multiplying (1 - 7) (n is the number of data)

with the maximum likelihood estimator yields a larger value for the expected log-likelihood than
simply using the maximum likelihood estimator [9]. Therefore, even if no prior information about
the true parameter is available, a predictive estimator that performs better than the maximum
likelihood estimator is available. Conversely, our predictive estimator of the binomial distribution
requires some prior knowledge about the parameters. However, a predictive estimator that does not
need any prior knowledge of the parameters is still possible. Furthermore, if we develop a method of
constructing an optimal predictive estimator depending on the prior knowledge on the parameters,
we expect that such a predictive estimator will replace the maximum likelihood estimator. The
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same is true for the estimation of parameters of distributions other than the binomial distribution.
The MSE (mean squared error) is defined as below (page 330 in [1]).
MSE = Eo(W —6)?, (3.1)

where 0 is the true parameter, W is the estimator of the parameter, and FEjy is the expectation
given by averaging the results of repeated samplings. As noted on page 332 of [1], MSE depends
upon the true parameter; hence, some prior knowledge about the parameters is needed to estimate
the parameters by minimizing MSE. In this regard, minimizing MSE is similar to maximizing
the expectation of expected log-likelihood. Estimation of variance of data by minimizing MSE,
however, does not need such prior knowledge. This situation should be handled as an exception
in the same way that the exponential distribution has an exceptional predictive estimator and the
normal distribution has “third variance” ([10-11]).

Moreover, methodologies based on predictive estimators have something in common with smoothing
splines (e.g., sections 2 and 3 of [12], and section 3 of [13]). Currently, no definitive theory on the
desirable form of the roughness penalty in smoothing splines is available; hence, we could not
confirm that the most commonly-used roughness penalty is the optimal one. Diverse theories and
numerical simulations, however, indicate that our common roughness penalty is valid from various
perspectives. Further, we have not confirmed that the use of Eq.(2.12) as a predictive estimator
is appropriate or optimal. However, Fig.1 and Fig.2 show that when a is set in a valid range, the
predictive estimator defined in Eq.(2.12) outperforms the maximum likelihood estimator. Therefore,
although we cannot deny the possibility that better predictive estimators exist, tentatively Eq.(2.12)
with an appropriate value of a can be used. That is, setting an appropriate value of a corresponds
to setting appropriate values for the smoothing parameters in smoothing splines. Thus, the use of a
predictive estimator such as Eq.(2.12) can be justified in the same sense that the use of smoothing
splines is justified, even though it has not been proven that smoothing splines leads to better results
than those obtained by all the other estimation methods.

The characteristics of the predictive estimator should now be evaluated for various estimations; in
particular, the predictive estimator should be compared with the maximum likelihood estimator and
unbiased estimator. Such studies will help establish major techniques for using data more efficiently.
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