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1 Introduction

The study of hypersurfaces with almost contact structures are important parts of differential
geometry. It was 1967, M. Okumura [1] studied the totally umbilical hypersurfaces of a product
Riemannian manifold and hypersurface of an almost r-paracontact Riemannian manifold studied
by A. Bucki [2]. In 1970, S. I. Goldberg and K. Yano [3] studied the geometry of non-invariant
hypersurfaces of almost contact manifolds. D. E. Blair [4] discussed the case of almost contact
manifolds with Killing structure tensor. In 1989, D. Narain studied differential geometry of hyper-
surfaces with (f, g, u, v, λ)-structures [5]. Moreover, D. Narain and others also studied the non-
invariant hypersurfaces of Sasakian, nearly Sasakian and para Sasakian manifold in (see [6], [7],
[8]) respectively. After that R. Prasad and M. M. Tripathi [9] studied the transversal hypersurfaces
of Kenmotsu manifolds. In 1985, J. A. Oubina introduced a new class of almost contact metric
manifold known as trans-Sasakian manifold [10]. This class contains α-Sasakian and β-Kenmotsu
manifold. Thus motivated by the studies referred above in the present paper, we have studied
the covariant almost analytic vector filed on Q-quasi umbilical hypersurface of a trans-Sasakian
manifold.

The present paper is organized as follows: In section 2, we give the brief introduction about the
trans-Sasakian manifold. In section 3, the hypersurfaces of a trans-Sasakian manifold with (φ, g,
u, v, λ)-structure have been discussed. In section 4, we express the Q-quasi umbilical hypersurface
and in section 5, we obtained some results on covariant almost analytic vector field on Q-quasi
umbilical hypersurface of a trans-Sasakian manifold.

2 Basic Results and Definitions

Let M̄ be a (2n + 1) dimensional manifold with almost contact metric structure (φ̄, ξ, η, ḡ), where
φ̄ is a (1,1) tensor field, ξ is a vector field, η is a 1-form and ḡ is a compatible Riemannian metric
such that

φ̄2 = −I + η⊗ξ, φξ = 0, ηoφ = 0, η(ξ) = 1, (2.1)

ḡ(φ̄X, φ̄Y ) = ḡ(X,Y )− η(X)η(Y ), (2.2)

ḡ(X,φY ) = −ḡ(φX, Y ), ḡ(X, ξ) = η(X). (2.3)

An almost contact metric structure (φ̄, ξ, η, ḡ), is called an trans Sasakian manifold if

(∇̄X φ̄)(Y ) = α(ḡ(X,Y )ξ − η(Y )X) + β(ḡ(φX, Y )ξ − η(Y )φ̄X) (2.4)

and it follows

∇̄Xξ = −αφ̄X + β(X − η(X)ξ), (2.5)

where ∇̄ denotes the Riemannian connection of the Riemannian metric ḡ, then the structure
(φ̄, ξ, η, ḡ) is called a trans-Sasakian manifold.

If we define G(X,Y ) = ḡ(φX, Y ), then we also find

G(X,Y ) +G(Y,X) = 0, (2.6)

G(X,φY ) = G(Y, φX), (2.7)

G(φX, φY ) = G(X,Y ). (2.8)
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3 Hypersurface of a Trans-Sasakian Manifold with
(φ, g, u, v, λ)-structure

Let us consider a 2n-dimensional manifold M embedded in M̄ with embedding i : M → M̄ . The
map i induces a linear transformation map B, B : Tp→Tip . Let an affine unit normal N of M is in
such way that φ̄N is always tangent to the hypersurface and satisfying the linear transformations

φ̄BX = BφX + u(X)N, (3.1)

φ̄N = −BU, (3.2)

ξ = BV + λN, (3.3)

η(BX) = v(X), (3.4)

where φ is (1, 1) type tensor; U , V are vector fields; u, v are 1-form and λ is a C∞-function. If
u 6= 0, then M is called a non-invariant hypersurface of M̄ .

Operating (3.1), (3.2), (3.3) and (3.4) by φ̄ and using (2.1), (2.2), and (2.3) and taking tangent and
normal parts separately, we get the following induced structures on M

φ2X = −X + u(X)U + v(X)V, (3.5)

u(φX) = λv(X), v(φX) = −η(N)u(X), (3.6)

φU = −η(N)V, φV = λU, (3.7)

u(U) = 1− λη(N), u(V ) = 0, (3.8)

v(U) = 0, v(V ) = 1− λη(N) (3.9)

and from (2.2) and (2.3), we get the induced metric g on M .

g(φX, φY ) = g(X,Y )− u(X)u(Y )− v(X)v(Y ), (3.10)

g(U,X) = u(X), g(V,X) = v(X). (3.11)

If we consider η(N) = λ, we get the following structures on M

φ2 = −I + u⊗ U + v ⊗ V, (3.12)

φU = λV, φV = λU, (3.13)

u ◦ φ = λv, v ◦ φ = −λu, (3.14)

u(U) = 1− λ2, u(V ) = 0, (3.15)

v(U) = 0, v(V ) = 1− λ2. (3.16)

A manifoldM with a metric g satisfying (3.10), (3.11) and (3.12) is called manifold with (φ, g, u, v, λ)-
structure. Let ∇ be the induced connection on the hypersurface M of the affine connection ∇̄ of
M̄ .

Now the Gauss and Weingarten equations are given respectively by

∇̄BXBY = B∇XY + h(X,Y )N, (3.17)

∇̄BXN = BHX + w(X)N, where g(HY,Z) = h(Y,Z). (3.18)

Here h and H are the second fundamental tensor of type (0, 2) and (1, 1) and w is a 1-form.

3



Siddiqi et al.; BJMCS, 18(6), 1-9, 2016; Article no.BJMCS.27176

Now differentiating (3.1), (3.2), (3.3) and (3.4) covariantly and using (3.17), (3.18) and (2.4) and
again re-using (3.1), (3.2), (3.3) and (3.4), we get

(∇Y φ)(X) = α {v(X)Y − g(X,Y )V }+ β {λg(φX, Y )V − v(Y )φX} (3.19)

−h(X,Y )U − u(X)HY,

(∇Y u)(X) = αλg(X,Y ) + β {λg(φX, Y )− u(X)v(Y )}+ g(X,φY )− h(X,φY ), (3.20)

(∇Y v)(X) = αg(φY,X)− β {λg(Y,X)− u(X)u(Y )− v(X)v(Y )}+ λh(X,Y ), (3.21)

∇Y U = φHY + βw(Y )U − αλY, (3.22)

∇Y V = αφY + λHY , (3.23)

h(Y, V ) = αu(Y ) + βλw(X), (3.24)

h(Y,U) = u(HY ) + w(X). (3.25)

Since h(X,Y ) = g(HX,Y ), then from (2.3) and (3.25), we get

h(Y,U) = 0⇒ HU = 0. (3.26)

4 Q-Quasi Umbilical Hypersurface

M is called Quasi-umbilical hypersurface if

h(X,Y ) = ag(X,Y ) + bq(X)q(Y ), (4.1)

where a, b are scalar functions, q is a 1-form and if g(Q,X) = q(X), where Q is a vector field, then
M is called Q-quasi umbilical hypersurface. If a = 0, b 6= 0, then Q-quasi umbilical hypersurface M
is called cylindrical hypersurface. If a 6= 0. b = 0, then Q-quasi-umbilical hypersurface M is called
totally umbilical and if a = 0, b = 0, then Q-quasi umbilical hypersurface is totally geodesic. By
using (4.1) in (3.19)-(3.25), we get the following:

(∇Y φ)(X) = α {v(X)Y − g(X,Y )V }+ β {g(φX, Y )V − v(Y )φX} (4.2)

−{ag(X,Y ) + bq(X)q(Y )}U − u(Y ) {aY + bq(Y )Q} ,

(∇Y u)(X) = {(1 + a)g(φX, Y )} − β {λg(φX, Y )− u(X)w(Y )} (4.3)

+αλg(X,Y ) + bq(X)q(Y ),

(∇Y v)(X) = αg(φY,X)− β {λg(Y,X)− u(X)u(Y )− v(X)v(Y )} (4.4)

+λ {ag(X,Y ) + bq(X)q(Y )} ,

∇Y U = βw(Y )U + {aφY + bq(Y )Q} − αλY, (4.5)

∇Y V = αφY + λ {aY + bq(Y )Q} , (4.6)

h(Y, V ) = ag(V, Y ) + bq(V )q(Y ), (4.7)

|u(Q)|2 = −a
b

(1− λ2) + w(X). (4.8)

Also from (3.15), (3.24) and (4.1), we get

w(U) =
α(1− λ2)

βλ
(4.9)
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5 Covariant Almost Analytic Vector Field on Q-quasi
Umbilical Hypersurface

1-form u and v are said to be covariant almost analytic if

u {(∇Xφ)(Y )− (∇Y φ)(X)} = (∇φXu)(Y )− (∇Xu)(φY ) (5.1)

and
v {(∇Xφ)(Y )− (∇Y φ)(X)} = (∇φXv)(Y )− (∇Xv)(φY ). (5.2)

Theorem 5.1. On Q-quasi umbilical hypersurface M with (φ, g, u, v, λ)-structure of a trans-
Sasakian manifold M̄ , if 1-form u be a covariant almost analytic, then we have

α {v(Y )u(X)− v(X)u(Y )} = −(2 + 2a+ 2β)g(φX, φY )− 2αλg(φX, Y ) (5.3)

−bq(φY )q(φX) + β {u(φY )w(X)− u(Y )w(φX)}
+2bq(X)u(Y )u(Q).

Proof. From equation (4.2), we have

(∇Y φ)(X) = α {v(X)Y − g(X,Y )V }+ β {g(φX, Y )V − v(Y )φX}

− {ag(X,Y ) + bq(X)q(Y )}U − u(X) {aY + bq(Y )Q}
and

(∇Xφ)(Y ) = α {v(Y )X − g(Y,X)V }+ β {g(φY,X)V − v(X)φY }
− {ag(Y,X) + bq(Y )q(X)}U − u(Y ) {aX + bq(X)Q} .

Now from above equations we have

(∇Xφ)(Y )− (∇Y φ)(X) = α {v(Y )X − v(X)Y }+ β {v(Y )φX − v(X)φY }

−u(Y ) {aX + bq(X)Q}+ u(X) {aY + bq(Y )Q}
u {(∇Xφ)(Y )− (∇Y φ)(X)} = α {v(Y )X − v(X)Y } (5.4)

+b {u(X)q(Y )− q(X)u(Y )}u(Q).

Also from equation (4.3)

(∇Xu)(Y ) = −{(1 + a)g(φY,X)}+ β {λg(φY,X)− u(Y )w(X)}

+αλg(Y,X) + bq(φY )q(X)

replacing φ by φX and φY in the last equation, we find respectively

(∇φXu)(Y ) = −{(1 + a)g(φY, φX)}+ β {λg(φY, φX)− u(Y )w(φX)}

+ αλg(Y, φX) + bq(φY )q(φX)

and
(∇Xu)(φY ) = −(1 + a)g(φX, φY ) + bq(Y )q(X)− bu(Y )q(U)q(X)

− βu(φY )w(X)− αλg(X,φY ).

From last two equations we find

(∇φXu)(Y )− (∇Xu)(φY ) = −(2 + 2a+ 2β)g(φX, φY )− bq(φY )q(φX) (5.5)

+ bu(Y )q(U)q(X) + β {u(φY )w(X)− u(Y )w(φX)}
− bq(Y )q(X) + αλg(X,φY )− αλg(φX, Y )

and using equation (5.1) in (5.4) and (5.5), we get (5.3).
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Corollary 5.1. On Q-quasi umbilical hypersurface M with (φ, g, u, v, λ)-structure of a trans-
Sasakian manifold M̄ , if 1-form u be a covariant almost analytic, then we also have

2αλ2 = 0, α 6= 0, (5.6)

where λ is covariant constant along M̄ .

Proof.
α(1− λ2)2 = −(2 + 2a+ 2β).0 + 2αλ2(1− λ2) + βλ(1− λ2)w(U)

α(1− λ2) = +2αλ2(1− λ2) + βλ(1− λ2)w(U)

α(1− λ2) = +2αλ2(1− λ2) + βλ

{
α(1− λ2)

βλ

}
α(1− λ2) = 2αλ2 + α(1− λ2)

2αλ2 = 0, α 6= 0,

which shows that λ is covariant constant along M̄ .

Theorem 5.2. On cylindrical hypersurface M with (φ, g, u, v, λ)-structure of a trans-Sasakian
manifold M̄ with covariant analytic vector fields U and V , we have

α {v(Y )u(X)− v(X)u(Y )} = −(2 + 2β)g(φX, φY )− 2αλg(φX, Y ) (5.7)

− bq(φY )q(φX) + β {u(φY )w(X)− u(Y )w(φX)} .

Proof. Putting a = 0 in equation (5.3) and using u(Q) = 0, we get equation (5.7).

Corollary 5.2. On cylindrical hypersurface M with (φ, g, u, v, λ)-structure of a trans-Sasakian
manifold M̄ with covariant analytic vector fields U , V , we have

αu(Y ) + (1 + β)v(Y ) = 0, (5.8)

q(Q) = 0. (5.9)

Proof. Putting X = V in equation(5.7), we get

−α(1− λ2)u(Y ) = −(2 + 2β)g(φV, φY )− 2αλg(φV, Y )

− bq(φY )q(φV ) + β {u(φY )w(V )− u(Y )w(φV )}

−α(1− λ2)u(Y ) = −(2 + 2β)v(Y )λ2 − 2αλ2u(Y ) + β {u(φY )w(V )− u(Y )w(φV )}

−α(1− λ2)u(Y ) = −(2 + 2β)v(Y )λ2 − 2αλ2u(Y ) + βu(φY )w(V )− βλu(Y )w(U)

α(3λ2 − 1)u(Y ) = −βλu(Y )

{
α(1− λ2)

βλ

}
− (2 + 2β)v(Y )λ2

2αλ2u(Y ) = −(2 + 2β)v(Y )λ2

αu(Y ) + (1 + β)v(Y ) = 0.

Also from equation (5.7), we get

u(X)V − v(X)U = −(2 + 2β)φX − 2αλφX − bφQq(φX)− bq(X)Q+ β {w(X)φU − w(φX)U}
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which on contracting with respect to X gives

0 = −bq(φ2Q)− bq(Q) + β {λw(X)− λw(V )}

or
bq(Q) = (V λ) = 0,

since b 6= 0, so q(Q) = 0.

Theorem 5.3. On Q-quasi umbilical hypersurface M with (φ, g, u, v, λ)-structure of a trans-
Sasakian manifold M̄ , if 1-form u is covariant almost analytic and M is totally umbilical, then
we have

α {v(Y )u(X)− v(X)u(Y )} = −(2 + 2a+ 2β)g(φX, φY )− 2αλg(φX, Y ) (5.10)

+ β {u(φY )w(X)− u(Y )w(φX)}

Proof. Putting b = 0 in equation (5.3), we get equation (5.10).

Corollary 5.3. On Q-quasi umbilical hypersurface M with (φ, g, u, v, λ)-structure of a trans-
Sasakian manifold M̄ , if 1-form u is covariant almost analytic and M is totally umbilical, then we
have

a =

{
α(1− 3λ2)v(Y )

λ

}
−

{
α(1− 3λ2)

λ
+ 2(1 + β)

}
u(Y ) (5.11)

Proof. Put X = U in equation (5.10), we get

α(1− λ2)v(Y ) = −(2 + 2a+ 2β)v(φY ) + 2αλ2v(Y ) + β {u(φU)w(X)− u(Y )w(φU)}

α(1− λ2)v(Y ) = −(2 + 2a+ 2β)v(φY ) + 2αλ2v(Y ) + β

{
u(φY )

α(1− λ2)

βλ

}
α(1− λ2)v(Y )− 2αλ2v(Y ) = −(2 + 2a+ 2β)u(Y ) + u(Y )

{
u(φY )

α(1− λ2)

λ

}
α(1− 3λ2)v(Y ) = u(Y )

{
−2λ− 2aλ− 2βλ+ α(1− λ2)

}
α(1− 3λ2)v(Y )− α(1− λ2)u(Y ) = −2u(Y ) {λ+ aλ+ βλ}

aλ = α(1− 3λ2)V − α(1− λ2)U + 2Uλ+ 2βλU

which on further solving gives (5.11).

Theorem 5.4. On Q-quasi umbilical hypersurface M with (φ, g, u, v, λ)-structure of a trans-
Sasakian manifold M̄ , if 1-form v is covariant almost analytic, then we have

α {u(X)v(Y )− u(Y )v(X)} = −2αg(φX, φY ) + 2(λ+ β)ag(φX, Y ) (5.12)

+ λb {q(φX)q(Y )− q(X)q(φY )}

Proof. From equation (4.2), we get

(∇Xφ)(Y )− (∇Y φ)(X) = α {v(Y )X − v(X)Y }+ β {v(Y )φX − v(X)φY }

− u(Y ) {aX + bq(X)Q}+ u(X) {aY + bq(Y )Q}
(∇Xφ)(Y )− (∇Y φ)(X) = β {v(Y )φX − v(X)φY }+ a {u(X)v(Y )− u(Y )v(X)} (5.13)

From (4.3), we have

(∇φXv)(Y ) = (λa+ β)g(φX, Y ) + λ {u(X)v(Y )− v(X)u(Y )}
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and

(∇Xv)(φY ) = −α {g(X,Y )− u(X)u(Y )− v(X)v(Y )}+ (λ− β)g(X,φY )

+ λ {v(X)u(Y )− u(X)v(Y )} .

Therefore we have

(∇φXv)(Y )− (∇Xv)(φY ) = −2αg(φX, φY ) + 2(λ+ β)ag(φX, Y ) (5.14)

+ λb {q(φX)q(Y )− q(X)q(φY )} .

By using equation (5.2) in (5.13) and (5.14), we get (5.12).

Theorem 5.5. Let the 1-from v be a covariant almost analytic on Q-quasi umbilical hypersurface
M with (φ, g, u, v, λ)-structure of a trans-Sasakian manifold M̄ if it is also cylindrical, then we have

2g(φX, φY ) = λb {q(φX)q(Y )− q(X)q(φY )} (5.15)

− β {v(Y )v(φX)− v(X)v(φY )}

with X 6= U.

Proof. Putting α = 0 in equation (5.12), we obtain equation (5.15). Further X = U , then from
(5.15), we have

2g(φU, φY ) = λb {−λq(V )q(Y )− q(U)q(φY )}

− β {v(Y )v(φU)}

−2λg(V, φY ) + βg(V, Y )g(V, φU) = 0

or

−2λv(φY ) + βv(Y )V (φU) = 0,

since v(φY ) 6= 0 and λ 6= 0, therefore X 6= U .

Theorem 5.6. Let the 1-form v be a covariant almost analytic on Q-quasi umbilical non-invariant
hypersurface of M with (φ, g, u, v, λ)-structure of a trans-Sasakian manifold M̄ , if it is also totally
umbilical, then we have

α {u(X)v(Y )− v(X)u(Y )} = −2αg(φX, φY ) + 2(λ+ β)ag(φX, Y ) (5.16)

− β {v(Y )v(φX)− v(X)v(φY )} ,

with X 6= U .

Proof. Putting b = 0 in equation (5.12), we get (5.14). If we take X = U in(5.16), we get

a(1− λ2)v(Y ) + 2(λ+ β)av(Y ) = 2αλv(φY )− βv(Y )u(φU)

a
{

1− λ2 + 2(λ+ β) + βu(φU)
}
v(Y ) = −2αλv(φY )

a
{
λ2 − 2(λ+ β)− βU − 1

}
v(Y ) = −2αλ2U

i.e. V and U are linearly dependent, which is a contradiction. Thus X 6= U .
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6 Conclusion

In the present paper we have studied the axioms of covarinat almost analytic vector field on Q-quasi
umbilical hypersurface of a trans-Sasakian manifold. We prove that Q-quasi umbilical hypersurface
M with (φ, g, u, v, λ) and M is totally umbilical also totally geodesic are very strong assumptions
they are correlated with Yang-Mills theory.
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