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Author’s contribution

The sole author designed, analyzed and interpreted and prepared the manuscript.

Article Information

DOI: 10.9734/BJMCS/2016/28996
Editor(s):

(1) Wei-Shih Du, Department of Mathematics, National Kaohsiung Normal University, Taiwan.
Reviewers:

(1) Grienggrai Rajchakit, Mae jo University, Thailand.
(2) Maria Isabel Garcia-Planas, Polytechnic University of Catalonia, Spain.

Complete Peer review History: http://www.sciencedomain.org/review-history/16253

Received: 17th August 2016

Accepted: 10th September 2016

Original Research Article Published: 20th September 2016

Abstract

In this paper we present some original contributions to the problem of controllability of bilinear
systems control whose dynamics is determined by elements that lie on the Lie algebra of special
linear Lie group. Our study provides a sufficient condition for controllability of homogeneous
bilinear systems, when the state variable dynamic modeling lies on the three-dimensional space.
Such a condition is a contribution to the theory of geometric control.
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1 Introduction

Controllability property of control systems is one of the most important problems in control theory
and there is no general criterion. For example, if we considerer a linear system of the form

ẋ(t) = Ax(t) +Bu(t)
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where x(t) ∈ Rn, t ∈ [t0, T ], A ∈ M(n,R), B ∈ M(n×m,R) and u is piecewise constant function,
there is a criterion known as Kalman’s criterion to analyze the property of controllability. As is
well know, many authors have discussed the controllability property for bilinear control systems
when the state variable lies on the plane, see for instance [1], [2], [3]. However, when the dynamic
is described on high dimension there are many unsolved problems, and in that sense the search
conditions necessary and/or sufficient to characterize the property of controllability have attracted
great attention during the last decades, [4] [5], [6], [7], [8], [9].

Jurdjevic-Kupka in [10], establish conditions for matrices A and B in such a way that the bilinear
system is controllable on SL(n,R). In the same way, Gauthier et Bornard in [11], as from [10],
establish a necessary and sufficient condition for the bilinear control system.

In this paper, we have establish a characterization of controllability for the class of bilinear systems
whose dynamics is determined by a special class of matrices that belong to the semisimple Lie
algebra sl(3,R)

This paper is organized as it follows: in section 2 provides a review of theory of control on Lie
Groups, matrices and graphs. In Section 3, it is presented the main result.

2 Preliminaries

The organization of the following definitions is presented so as this article is self- contained, for this
reason we describe some basic concepts for the understanding of our work.

2.1 Matrices and graphs

Definition 2.1. Let A = (aij) ∈ M(n,R) be, it defines the graph of A, denoted Γ(A), as the set
of n ordered points from 1 to n called vertices of the graph and oriented arcs formed by joining a
vertex i to the vertex j, if aij ̸= 0.

Example 2.1. If A =

 1 5 −1
9 −3 1
1 −3 0

, then Γ(A) is:

Definition 2.2. It is said that a graph Γ(A) is strongly connected if for every pair (i, j) of vertices,
there is exists an oriented path connecting i to j starting from i and ending in j.

Example 2.2. Γ(A) of Example 2.1 is strongly connected.

Definition 2.3. A matrix A ∈ M (n,R), is called permutation-reducible if there is exists a
permutation matrix P such that:

P−1AP =

(
A1 A2

0 A3

)
where A3 ∈ M (r,R) with 0 < r < n.

Definition 2.4. A matrix A ∈ M (n,R), is called permutation-irreducible if it is not permutation-
reducible.

See more [12] and [13].
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Fig. 1. Γ(A) Example 2.1

Theorem 2.3. A ∈ M(n,R) is permutation-irreducible matrix if only if Γ(A) is strongly connected.

Proof. See [12] and [13].

2.2 Lie groups and Lie algebras

Definition 2.5. A Lie group G is smooth maniflod, abstrac group and group operations in G are
smooth.

See more [14].

Example 2.4. The special linear group consists of n× n unimodular matrices:

SL (n,R) = {X ∈ M (n,R) : det (X) = 1} ,

is a Lie group.

Definition 2.6. A Lie algebra g is a vector space endowed with a binary operation

[·, ·] : g× g −→ g,

(Called Lie bracket) satisfying the following properties:

1. [·, ·] is bilinear.
2. [x, x] = 0, ∀x ∈ g

3. For all x, y, z ∈ g, [x, [y, z]] + [z, [x, y]] + [y, [z, x]] = 0. (Jacobi identity)

Example 2.5. M (n,R) endowed of bracket defined by [X,Y ] = XY − Y X, is a Lie algebra.

Definition 2.7. The tangent space to a Lie group G at the identity element is called the Lie algebra
of the Lie group G. g := TIdG.

3
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Example 2.6. The Lie algebra of the special linear group is denoted by

sl (n,R) := TIdSL (n,R) =
{
Ẋ (0) : X (t) ∈ SL (n,R) , X (0) = Id

}
.

It is not difficult to see that sl (n,R) = {A ∈ M (n,R) : tr (A) = 0} .

Definition 2.8. A subspace h of a Lie algebra g is a Lie subalgebra if [X,Y ] ∈ h, ∀X,Y ∈ h.

In order to define exponential map, we remember that one-parameter subgroup of G is a function
φ : (R,+) −→ G.

Definition 2.9. The function exp : g −→ G is called exponential map of g in the Lie group G and
is define by exp(X) := expX(1), where t 7→ expX(t) is a one-parameter subgroup.

If G = GL (n,R), then g = M (n,R) and exponential map is given by

exp (A) = eA = Id+A+
A2

2!
+ . . .+

An

n!
+ . . . ,

with n ∈ N and A ∈ M (n,R) .

Definition 2.10. Let g be a Lie algebra, its adjoint representation is the function

ad: g −→ gl(g)
X −→ ad (X)

where ad(X)(Y ) = [X,Y ], for all X,Y ∈ g.

See more [15].

2.3 Controllability

As is known in the theory of differential equations they are studied equations depending on a
parameter, such as

ẋ = f(x, u), x(0) = x0 ∈ M, (2.1)

with the right side depending on the parameter u, which takes values in a set U ⊂ Rm. The set
U is called the set of control parameters, x ∈ M represents the physical state of the system, f is a
regular function, and u(t) ∈ U ⊂ Rm represents the income from the outside world, called control.
When control u is fixed, the system equation ẋ = f(x, u) a dynamic system is defined. Thus, the
control system (2.1) it can be seen as a family of differential equations parameterized by the control
as parameter.

We consider in this paper, a control system when f is linear in the control and variable states.
That is, the system belongs to the class of bilinear systems. Namely, the control system bilinear
unrestricted control, given by

ẋ(t) = (A+ u(t)B)x(t), (2.2)

where A,B ∈ sl(n,R), control u(t) ∈ R and state variable x ∈ Rn \ {0}. Equivalently,

Γ = A+ uB ⊂ sl (n,R) , u ∈ R.

Definition 2.11. A trajectory of Γ on G is a continuous curve φ(t) in G defined on an interval
[t0, T ] ⊂ R so that there exists a partition t0 < t1 < . . . < tN = T and Γ1, . . . ,ΓN ∈ Γ such that
the restriction of φ(t) to each open interval (ti−1, ti) is differentiable and

φ̇(t) = φ(t)Γi for t ∈ (ti−1, ti), i = 1, . . . , N.
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Definition 2.12. For any T > 0 and any g ∈ G the reachable set for time T of system Γ ⊂ g from
the point g is the set AΓ (g, T ), of all points that can be reached from g in exactly T units of time.
More precisely,

AΓ (g, T ) = {φ (T ) : φ (·) a trajectory of Γ, φ (0) = g} .
The reachable set for time not greater than T ≥ 0 is defined as

AΓ (g,≤ T ) =
∪

0≤t≤T

AΓ (g, t) .

The reachable (or attainable) set of a system Γ from a point g ∈ G is the set,denoted AΓ, of all
terminal points φ (T ) , T ≥ 0, of all trajectories of Γ starting at g, that is to say,

AΓ (g) =
∪
T≥0

AΓ (g,≤ T ) .

In terms of the notion of attainable set we can introduce the property of controllability of a system
as follows,

Definition 2.13. A system Γ ⊂ g is called controllable if, given any pair of points g0 and g1 in a
Lie group G, the point g1 can be reached from g0 along a trjectory of Γ for a nonnegative time:

g1 ∈ AΓ (g0) , for any g0, g1 ∈ G,

or in other words, if AΓ (g) = G for any g ∈ G.

See more [16], [17] [18].

If Γ ⊂ g, we denoted by Lie(Γ) the Lie algebra generated by Γ, i.e, the smallest Lie subalgebra of
g containing Γ.

Definition 2.14. A system Γ ⊂ g is said to have full rank, or to satisfy the Lie algebra Rank
Condition: LARC, if Lie(Γ) = g.

As indicated in [11], the full rank condition is equivalent to considering that the matrix A in the
system (2.2), is permutation-irreducible.

The full rank condition is, in general, a necessary condition for the controllability of bilinear systems
on Lie groups. If the Lie group G is compact for him controllability is equivalent to the LARC.

Theorem 2.7. If Γ is controllable, then Lie(Γ) = g.

Proof. See [17].

Definition 2.15. Let Γ1,Γ2 ⊂ g. The system Γ1 is called equivalent to the system Γ2, denoted
Γ1 ∼ Γ2 if

cl (AΓ1) = cl (AΓ2) ,

where, cl(·) denotes the closure topological

Definition 2.16. The saturate of a left-invariante system Γ ⊂ g is the following systems:

Sat (Γ) =
∪{

Γ′ ⊂ g : Γ′ ∼ Γ
}

Definition 2.17. The Lie saturate of a left-invariant system, denoted by LS (Γ), is defined as
follows:

LS (Γ) = Lie (Γ) ∩ Sat (Γ)
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Now, we will give a result that provides basic properties of Lie saturate of acontrol system.

Proposition 2.1. (1) LS (Γ) is closed convex positive cone in g, i.e,

(1a) LS (Γ) is topologically closed:

cl (LS (Γ)) = LS (Γ)

(1b) LS (Γ) is convex:

A,B ∈ LS (Γ) → αA+ (1− α)B ∈ LS (Γ) , ∀α ∈ [0, 1]

(1c) LS (Γ) is a positive cone:

A ∈ LS (Γ) → αA ∈ LS (Γ) , ∀α ≥ 0,

thus,
A,B ∈ LS (Γ) → αA+ βB ∈ LS (Γ) , ∀α, β ≥ 0

(2) If A,±B ∈ LS (Γ) for all v ∈ R, then,

exp (v · ad (B))A ∈ LS (Γ)

(3) If ±A,±B ∈ LS (Γ), then [A,B] ∈ LS (Γ).

(4) If A ∈ LS (Γ) and if the one-parameter subgroup {exp (tX) : t ∈ R} is periodic (i.e, compact),
then −A ∈ LS (Γ) .

Proof. See [16]

3 Controllability Bilinear System on sl(3,R)
In this section, we deliver a feature of controllability of bilinear systems.

The following result establishes a necessary and sufficient condition for controllability of bilinear
systems on special linear Lie group.

Proposition 3.1. The system ẋ(t) = (A + u(t)B)x(t), where u(t) ∈ R and x ∈ Rn \ {0}, A,B ∈
sl (n,R), is controllable on SL(n,R) if only if

LS(T ) = sl (n,R) (3.1)

Proof. See [10]

The theorem, which is presented below, is the contribution that delivers this work and its proof is
based on using properties of Saturate, to finally apply Proposition 3.1.

Theorem 3.1. We consider the bilinear control unrestricted system with simple admission, given
by

ẋ(t) = (A+ u(t)B)x(t), (3.2)

with A,B ∈ sl(3,R), control u(t) ∈ R and state variable x ∈ R3 \ {0}. equivalently,

Γ = A+ uB ⊂ sl (3,R) , u ∈ R.

We suppose that the matrices A = (aij) and B satisfy the conditions:

1. a13a31 < 0
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2. Γ(A) is strongly connected.

3. B = diag (b1, b2, b3) , b1 < b2 < b3

4. bi − bj ̸= bk − bm for (i, j) ̸= (k,m)

Then Γ is controllable.

Proof. We consider the matrices A and B in the way,

A =

 a11 a12 a13

a21 a22 a23

a31 a32 a33

 con a13.a31 < 0

B =

 −a 0 0
0 b 0
0 0 a− b

 ,

where ∀ (i, j) ̸= (r, s) ⇒ bi − bj ̸= br − bs. In our case, b1 = −a, b2 = b and b3 = a− b, a > 0.

Without loss of generality, we assume that a13 > 0 and a31 < 0.

We show that the Lie Saturate LS (Γ) = sl (3,R) . (Proposition 3.1)

First of all, as Γ(A) is strongly connected, by Theorems 2.3, A is permutation-irreducible matrix,
then the system satisfies LARC.

On the other hand, as
A+ uB

|u| ∈ LS (Γ) ⇒ ±B ∈ LS (Γ)

when u → ±∞, moreover A ∈ LS (Γ) , then, from property (2) in the Proposition 2.1 We have that

At = exp (t · ad (B))A ∈ LS (Γ) ,

In order to compute the matrix of the adjoint operator

ad (B) : sl(3,R) −→ sl(3,R)

in a basis of sl(3,R). We have,

ad (B) (E12) = − (a+ b)E12

ad (B) (E13) = (b− 2a)E13

ad (B) (E13) = (b− 2a)E13

ad (B) (E23) = (−a+ 2b)E23

ad (B) (E21) = (a+ b)E21

ad (B) (E31) = (2a− b)E31

ad (B) (E32) = (a− 2b)E32

ad (B) (E11 − E33) = 0

ad (B) (E22 − E33) = 0,
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Therefore,

ad (B) =



−a− b 0 0 0 0 0 0 0
0 b− 2a 0 0 0 0 0 0
0 0 2b− a 0 0 0 0 0
0 0 0 a+ b 0 0 0 0
0 0 0 0 2a− b 0 0 0
0 0 0 0 0 a− 2b 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


,

from here,

exp (t · ad (B)) =



e(−a−b)t 0 0 0 0 0 0 0

0 e(b−2a)t 0 0 0 0 0 0

0 0 e(2b−a)t 0 0 0 0 0

0 0 0 e(a+b)t 0 0 0 0

0 0 0 0 e(2a−b)t 0 0 0

0 0 0 0 0 e(a−2b)t 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1


.

On the other hand, in the basis of sl(3,R) we can write

A =



a12

a13

a21

a23

a31

a32

a11

a22


,

thus,

At = exp (t · ad (B))A =



e(−a−b)ta12

e(b−2a)ta13

e(2b−a)ta21

e(a+b)ta23

e(2a−b)ta31

e(a−2b)ta32

a11

a22


.

Denoted by A7,8
t = At − a11 (E11 − E33)− a22 (E22 − E33), we have that A7,8

t ∈ LS (Γ) given that
At ∈ LS (Γ) . Explicitly,

A7,8
t =



e(−a−b)ta12

e(b−2a)ta13

e(2b−a)ta21

e(a+b)ta23

e(2a−b)ta31

e(a−2b)ta32

0
0


∈ LS (Γ) .
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From (1c) of the Proposition 2.1 we have that,

exp((2a− b) t)A7,8
t =



e(a−2b)ta12

a13

e(b+a)ta21

e3ata23

e(4a−2b)ta31

e(3a−2b)ta32

0
0


∈ LS (Γ) .

Now, we doing t → −∞ we obtain 

0
a13

0
0
0
0
0
0


∈ LS (Γ) .

As a13 > 0, we have that E13 ∈ LS (Γ) , similarly, we obtain that:

exp((b− 2a) t)A7,8
t =



e−3ata12

e(2b−4a)ta13

e(3b−3a)ta21

e(2b−a)ta23

a31

e(−a−b)ta32

0
0


∈ LS (Γ) ,

we doing t → ∞ result 

0
0
0
0
a31

0
0
0


∈ LS (Γ) ,

as a31 < 0the above expression implies that −E31 ∈ LS (Γ) .

Now, as LS (Γ) is a positive and convex cone, since E13 ∈ LS (Γ) and −E31 ∈ LS (Γ),it is concluded
that E13 − E31 ∈ LS (Γ) .

We note that,

exp (t (E13 − E31)) =

 cos (t) 0 sin (t)
0 1 0

−sin (t) 0 cos (t)

 ,

therefore, one-parameter subgroup {exp (t (E13 − E31)) : t ∈ R} is periodic, then, from (4) of the
Proposition 2.1 implies − (E13 − E31) ∈ LS (Γ). Therefore, ± (E13 − E31) ∈ LS (Γ) .
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On the other hand, from direct calculations, we obtain:

± [E13 − E31, E22 − E33] = ∓ (E13 + E31) ∈ LS (Γ) ,

± [E13 − E31, E11 − E33] = ∓2 (E13 + E31) ∈ LS (Γ) ,

then, ±E13,±E31,± (E22 − E33) ,± (E11 − E33) ∈ LS (Γ) .

As, ± [E31, E32] = ∓E31 ∈ LS (Γ) we have that ∓E32 ∈ LS (Γ) , also,

± [E22 − E33, E32] = ±E21 ∈ LS (Γ) .

Finally, ± [E23, E32] = ∓ (E22 − E33) ∈ LS (Γ).

Thus, we have shown that,

± E12,±E13,±E23,±E21,±E31,±E32,± (E11 − E33) ,± (E22 − E33) ∈ LS (Γ) , (3.3)

as
sl (3,R) = Span {E12, E13, E23, E21, E31, E32, E11 − E33, E22 − E33} ,

then, by (3.3) is concluded that LS (Γ) = sl (3,R) .

4 Conclusion

In this paper some original contributions to the problem of controllability of bilinear systems control
whose dynamics is determined by elements that lie on the Lie algebra of special linear Lie group
were presented.
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