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Abstract

In this study,the author investigates the distribution of the zerosobftions of the sixth order linei
homogenous differential equations (LHDE) with boundary démdi. An analytic approach is employed
in this paper that is based on the semi critical intervfatsoundary value problems. The main results|are
generalization of the results of LHDE of fifth ordendaexpansion to four points boundary value
problems.

Keywords: Linear differential equations; distribution of zefos the solution; boundary value problems;
semi-oscillatory interval; semi-critical interval; fundamentedrmal solution.

1 Introduction

The studies on distribution of zeros of solutions of lineandgeneous differential equations (LHDE) goes
back to 1960s. This field of study attracts many researchedsit gains much more interest for its
applications to functional equations [1,2], difference equat{@hsdifferential equations with complex
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coefficients [4,5] differential equations with delay constf8] and variable [7], and linear differential
equations [8-19]. The research papers [8-10] adapted a gevamtroach to study and prove the results of
the distribution of zeros of solutions which is complicated hard to prove because it depends on the
fundamental solutions of the differential equations, seqtires more steps and sometimes needs to impose
additional conditions to prove the results. Recently, an anapiproach is proposed by the authors of [11-
16] for distribution of zeros of solutions. The analyéipproach employs the set of normal fundamental
solutions to state and prove the results by using its prepeatiwhich makes it easier to prove [17].

The authors of [11-16] investigated LHDE of the fifttder. In this paper we consider LHDE of the sixth

order with four-points boundary conditions. The analytic apgrasa used to state and prove the properties
of LHDE of the sixth order with four-points boundary conditior3ur main results in this study

are r3191(a) < 151(a), T9211(0) < 159(a) @nd ry154 () < 159 (0).

2 Concepts and Terminology

Consider the following boundary value problem

5
x©) + g; ®xP =0 (@9)]
x(t) = %(t) = - =xP () =0 (2)

wherea <t; <t, < <ty <o, m is the number of pointstfi=1,..,m], p; is the number of
conditions at the points,i = 1,2, ..., m, g;(x) are continuous ofw, )

Problem (1) and (2) is calle®( p;p; .- pm) — problem >.

When the point, is fixed, the family of non-trivial solution of the proble® (p,p, ... pm) — problem > is
denoted byW, o, p. (& t1).

Definition 2-1 [12]: The interval[«,B),(a< a < B <) is called semi-oscillatory, if any non-trivial
solution for equation (1) has no more than five zerodyding multiplicity] in [«,B). The largest semi-
oscillatory interval that begins at the poinis denoted bya, r(a)).

Definition 2-2 [13]: The interval«,y) where«< (p;p; ...pm) — problem > has a unique solution is called
semi-critical, and the largest semi- critical interviat begins at the poiatis denoted byo, ry, ,, 5. (0)).

In this research paper, we discuss non- trivial solutionoahbary value problem (1) and (2) in the semi-
critical intervals.

Especially« (3111) — problem > where the solution has zero of multiplicity 3tat t;, a zero of
multiplicity 1 at the pointt = t,, a zero of multiplicity 1 at the point= t; and a zero of multiplicity 1 at
the pOIﬂtt = t4, Where(l < tl < tz < t3 < 1‘3111((1) < t4.

The first zero aftet = t; is denoted by (0, t, t,, t3), it's clearly that
r3111(0) S 131110, £, 8, t3) @ndrsgqq(a) = inf r3544(0, ty, tp, t3). ©))
Generally, the first zero after= t,,_, is denoted byr, ,, . (o,t;,t;, ..., tn—1) for which

rplpz...pm(a) = inf I'pips.bm (0, t1, tp) ) toq) 4)
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wherep; +p, + -+ py =6

Lemma 2-1 [14]: The functionr, ,, o (0,t,t5, ..., t—1) (Wheret, is fixed) is continuos from the right
(the right limit exists) at the points,, ts, ..., t,—; in the seR,_;[a, ). i.e.

; - 0 10 0
tlzl—r>rt1(z’ Tpipgepm (@t ) s tng) =Tp po po (0,8, 85,85 o, t_q)-
tz—td

0
tm-1-tm—

Lemma 2-2 [14]: The set of fundamental normal solution for equation (1){(ti|1-ét, t),j=01,..,m— 1})
with respect ta; has the following

uP(tt) = (t— )y (b)), Lj=01,..,m—1 (5)
where
u®(ty,t1)
] 1 1 > 1
vyt t) =4 g T I ©)
0 if j<i

3 Main Results

In this section we present three theorems for theilaigiton of zeros for the solutions of LHDES in the semi-
critical intervals.

Theorem 3-1: In the intervala, 13,1, (@)), any non-trivial solution (for the equation (1)) that hasra z¢
t, of multiplicity five cannot have a simple zero to ttight of t;, i.e. r3111(a@) < 15,(a), whent, —»
t; and t; = t;

Proof: First of all we show that the family of non-trivial sotrt for <«< (3111) — problem > at the fixed
pointt, contains at least one solution that becomes a non-tselation for« (51) — problem > when
t, > t;andts >ty

lim ( lim W44, (¢, t1)> = Ws, (¢, t1)

t3=ty \t2-t

From Vallee Poisinee theorem, for eache [o,r(e)) , there exists a semi-oscillatory interval
[t1, 7 (1)) ([20]). Choose > 0, such thaft,, t; + ¢) < [ty, r(t,)).

Letuy(t, t), u (¢, ty), ..., us(t, t;) be a set of fundamental normal solution for (1) wipest tot; i.e.
) _ 0 if i#j
w (b, t) = {1 if i=j
Thus, the family of non-trivial solution for the equati@) can be written as:

5

W(tt,) = z Gyt ty) )

j=p1

wherec; is an arbitrary constant.
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From the boundary condition fox (3111) — problem > we get the following homogeneous system.

5

> qu(e ) =0 ®)
j=p1
where
m
ki = 0,1, S 1, i= 2,3,4; Zpl =6
i=1

A necessary and sufficient condition for the system@)atve a non-trivial solution (for unknows) is:
— (k) Ci— . — 1. = —
D(t1! tZ! t3!t4) = det (uj (ti! tl)] - 3;4‘:5 ) ki - 0;1: D 1 ;L= 2;3;4‘) =0

The rank of the matrix of system (8) is equal to 2 anditferent from zero.

that is

u(tz, t)  us(ty ty)

*0
uy(ts, t)  us(ts ty)

A (ty, ty,t3) =

where<t; <t, <t; <t;+¢.

In fact, if A (¢, t,,t3) = 0 then the homogeneous system has a non-trivial soltfiand cs in [t t; +
€).Thus, the nontrivial solution for the equation (W)(t,t;) = ¢, u,(t, t,) + Cs us(t, t,) has six zeros in
the[t,, t; + €) where[t,, t; +¢€) [tl,r(tl)) four of six zeros are at the point zero at the point,, and
zero at the point;, this contradicts the concept of semi-oscillatory irdgerv

From the system (8), the first two equations constitutestesyof nonhomogeneous system
CaUg (b2, 1) + csus(ta, t1) = —caus(ty th)
Caug(t3, ) + csus(ts, t) = —czus(ts, ty)
Using Grammar-method, we find the valuescpfind cs. Note thatc; is a free parameter depends on

ty, t, and t5 that isc; = c3(tq, t, t3) then the general of non-trivial solution far(3111) — problem >
depends om; i.e.

Ay (ty,t,t3) Ag (t1:tz,t3)

Wapp1(6t) = csus(tty) + ————2 320, (6 ) + +
3111 (6 1) = G (6 1) A (tg,t5,t3) +(0t) A (ty, by, t3)

Us (t, tl) (9)

wherea; (t,t,,t3), i = 4,5 can be obtained from (t;,t,,t3) replacing(—csus(ty, t1)  —c3us(ts, t1))7
by first and second columns respectively.

From the equations (5) and (9) we find

a(ty, ty, ts)
uL(t, t
Gt =) 8, 6ty &)

1 B(t1,ts ts) . t1)>

W3111(6, ) = —¢5 <_u3(t, t) +

Us
(ty —t1)3 8(ty,tp, t3)
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where
sttt = [
attutnt) =[S e
Bt = [ UGS e

Sincec; is an arbitrary constant, we assume thét,, t,,t;) = (t, — t;)(t; — t;). By taking the limit of
both sides when, — t; we obtain,

(& — t1)¢03(t1;t1)u & t) + You(E3, t1)Wo3(ts, 1)
You(ts, tr) T o5 (B, t)Woa (b, £1)

lim Wsq14(t, ) = — us (¢, t1)
ty-t1

wheret; is the new position ot;.

Now we taking the limit of both sides whén— t; we obtain,

_Po3(ty, t)

_lpOS(tl tl) uS(t' tl) (10)

lim (lim W14, (8, 1))
t3-t ta-tg

From equation (6) we finghy;(t,,t,) = ; Yos(ty, ty) = % By substituting in equation (10), we find

lim (tling Waq14(t, tl)) = 20us(t, t;) 11)
27l

t3—t1

Thus we proved that the family of non-trivial solutiex (3111) — problem > contains a solution that
becomes a solution fax (51) — problem > whent, — t, and t; - t;

From the lemma (2-1) the functiory;1, (a, tq, t,t3) is continuous from the right, then we get the following
inequality

inf T3111(a, ty, £y, t3) < inf 3111(@, t1) (12)

xSty <tp;<tz<r31711(X) sty <rzy11(x)

where

lim (lim 13945 (@, ty, t5, t3)) = 13111 (a, 1)
t3—t1 -t

From equations (3) and (11), we find

inf T3111(@, ty, to, t3) = 13111 (@) (13)
xSty <tp<tz<r3111(X)
inf  rapa(aty) =r15(a) (14)
«<t1<r3111(X)

And from (12), (13) and (14), we get 1, (@) < r5.(a).
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Theorem 3-2: In the intervala, ,,,, (@)), any non-trivial solution (for the equation (1)) that hameeo at
t, of multiplicity five cannot have a simple zero to thghti of t; i.e. ry;;,(0) < rg,(a), whent, -
t;and t; = t;

Proof: Form Vallee Poisinee theorem [20], (for eactkE [0, r(a)), there exists a semi-oscillatory interval
[ty, r(t,)). Choose > 0, such thaft,, t; + &) c [tq, r(t,)).

Let uy(t, ty), uy (8, t1), ..., us(t, t;) be a set of fundamental normal solution for (1) witlpees tot; .

Thus, the family of non-trivial solution for the equati@) can be written as:

5

Wt = Z ¢yt t1) (15)

j=p1
From the boundary condition fex (2211) — problem > we get the following homogeneous system.

5

z C]'uj(ki)(ti,t1) =0 (16)

j=p1

where
m
ki = 0,1, v P — 1, i= 2,3,4; zpl =6
1=1

A necessary and sufficient condition for the system {d8)ave a non-trivial solution (for unknoveys) is:
_ (G PN C L — 1. = _
D(ty, ty, t3, t,) = det u (ty,t):j=2345; ki=01,..,p;—1;, i=234)=0

The rank of the matrix of system (16) is equal to 3 &adlifferent from zero.

That is

usz(ty, ) ualty, ty)  us(ty, ty)
A (ty, b, t3) = |Ug(ta t)  Ua(taty) Us(tat)|#0
us(ts, ty) walts, t) us(ts, ty)

whereo <t; <t, <t; <t; +¢.

In fact, if A (t1,t,,t3) = 0 then the homogeneous system has a non-trivial sola§iQit, andcs in
[ti,ty + ). Thus, the nontrivial solution for the equation (Wt t;) =Czus(tty) +Couu(tty) +

Cs us(t, t;) has six zeros in the semi-oscillatory interig) t; + &) where[t,,t; +¢) [ti,r(tl)) three of
six zeros are at the poitit, two zeros at the poing, and zero at the poing, this contradicts the concept of
semi-oscillatory interval.

In the system (16), the first three equations consti#ggstem of nonhomogeneous equation
c3Us(ty, ty) + cauy(ty, t1) + csus(ty, ty) = —cau,(ty ty)
CaU3(t, ty) + catiy (b, t1) + csl5(ts, ) = —caU(t, t)

c3Uz(ts, ty) + cauy(ts, ty) + csus(ts, t) = —cou,(ts, ty)
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Using Grammar-method, we find the valuest, and c;. Note that, is a free parameter depends on
ty, t, and ty that isc, = c,(t,,t,, t3) then the family of non-trivial solution for< (2211) — problem >
depends om, i.e.

5

Waa11 (6 t1) = coup(t, ty) + Z

i=3

A (ty, ta, t3)

A (tl; tz; t3) u’i(tr tl) (17)

where A (t,t5,t3), (i = 3,4,5) can be obtained from A (tq,ty, t3) replacing
(—cauy(ty, ty)  —Catly(ty, b))  —cous(ts, t))T by first, second and third columns respectively.
From the equation (5) we find

A (ty, ty t3) = (t5 — t1)3(t, — t)°d(ty, £, t3)

Ag (ty, ty t3) = (t5 — t)%(t, — t1)*d3(ty, Ly, t3)

Ay (tg, ty, t3) = (t3 — £)%(t, — t)*ds(tq, . t5)

Ag (tg, ty, t3) = (t3 — t1)%(t, — t1)3ds(tq, t, t3)
Where

d(ty, ty, t3) = (t — t1)>Wo3(ts, t1)@(ta, t1) + 8(ty, ty, t3)

ds(ty, ty, t3) = (t; — t) "oy (ts, t)a(ty, ty) + 85(ty, ty, ts)

dy(ty, ty, t5) = —(ty — £1)3Wgp (ts, t1) B (Ey, t1) + 84(ty, £y, t5)

ds(ty, ty,t3) = —(t, — t1)3 Yoz (t3, )y (to, t1) + 85(te, t, t3)

_ [Woalta ty)  os(tz, t) _ [Woa(ta,ty)  Pos(ta, t)
Pt ta) = P1a(ta t)  Pus(ty, tq) ol &) = P1a(taty)  Pis(ta ty)
_ |Yos(taty)  Pos(ta ts) _Pos(taty)  Poalta ty)
Bty t2) = P13(ty, t)  Pis(ta, ty) (6 t) = P13(ty, t1)  Pralty ty)

6(t1, tz, t3) d 0 and 6i(t1, tz, t3) - 0, (l = 3,4,5) When tz s tl'

By substituting in equation (17), we find

1 d3(ty, tp, t3) + 83(tq, £y, t3)
Wy, (6 t) = —c, [ —u,(t,ty) + usz(t,ty)
221 ! 2 ( 2 ! (tz - t1)(t3 - t1) d(tp ty, ts) + 5(t1, ty, t3) 3 !
1 dy(ty, ty, t3) + 64(t, t, t
n 4(ty, 5, t3) 4(ty, to, t3) w6 t,)
(t; — t)(ts — t1) d(ty, t,t3) + 8(ty, ty, t3)
1 dcs(ty, ty, t3) + 6:(tq, ty, t
n _ s(tq, t2, t3) s(tn by 3)u5(t,t1)
(t3 - t1)(t2 - t1) 6(t1; ta t3) + 5(t1; ty, ts)

Sincec, is an arbitrary constant, we assume thatt,, t,, t;) = —(t, — t;)%(t; — t;). By taking the limit of
both sides when, — t; we obtain,
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Yoz (B3, t1)y (ty, t1)
s o 0 (0 1) 50 ) (18)

hm W2211(t, tl) =
ty-tg

Wheret; is the new position of.

now taking the limit of both sides whégn— t; we obtain,

lim ( lim W11 (L, 1) us(t, t;) 19

t3—ty \t2~t

) _ Yoo (ty, )y (ty, t1)
Yoz (ty, t1)@(ty, t1)

and from equation (6) we find

1 1 1 1
Yoo (ty, t1) = > Yo3(ty, t1) = pr a(ty, ty) =—and @(t, t) = —

' o Py By substituting in equation (19),
we find

llm (tll‘r? W2211(t, t1)> = 60u5(t, tl) (20)
27l

t3—t1

Thus we proved that the family of non-trivial solutian(2211) — problem > contains a solution that
becomes a solution fak (51) — problem > whent, - t; and t; = t;

From the lemma (2-1) the functiep,,, (e, t, t,, t3) is continuous from the right, then we get the following
inequality

inf Ta211(@, by, ta, t3) < inf Ta211(a, ) 21)

oSty <tp<t3z<rTz2711(x) oSty <r211(x)

where

lim (lim 15515 (@, ty, t3, t3)) = 19511 (a, 1)
L=ty 2ot

From equations (4) and (20), we find

inf T2211(@, ty, b5, t3) = 1591 (@) (22)
oSty <ty<t3<r32711(x)
inf  1a(aty) = 15.(a) (23)
xsty<r2211(%)

From (21), (22) and (23), we g&bq1(a) < 15, (2) .
Theorem 3-3: In the intervala, ,1,, (@)), any non-trivial solution (for the equation (1)) that hameeo at
t, of multiplicity five cannot have a simple zero teethight oft, i.e. ry;5;(a) < rs,(a), whent, -

tyandt; -t

Proof: Form Vallee Poisinee theorem ([20]), for eacte [o, r(a)), there exists a semi-oscillatory interval
[ty, r(t1)). Choose > 0, such thaft,, t; + &) c [ty, r(t;)).

Letuy(t, ty),u; (& ty), ..., us(t, ty) be a set of fundamental normal solution for (1) wipeet tot; .
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Thus, the family of non-trivial solution for the equati{) can be written as:

5

W(tt,) = z Gyt ty) (24)

j=p1
From the boundary condition fe« (2121) — problem > we get the following homogeneous system.

5

> qu( ) =0 (25)

j=p1

where

m
ki=01,..,p;—1; i=234; Zpi =6
I=1

A necessary and sufficient condition for the system {@b)ave a non-trivial solution (for unknoveys) is:
_ (G PN C L — 1. = _
D(ty, ty, t3, t,) = det u (ty,t):j=2345; ky=01,...,pi—1; i=234)=0

The rank of the matrix of system (25) is equal to 3 &adlifferent from zero.

That is

uz(ty, ) ualty, ty)  us(ty, ty)
A (ty,ty, t3) = |us(ts, t)  us(ts, ty) us(ts, t)|#0
Us(ts, ty) alts, ty) Us(ts, ty)

whereo <t; <t, <t; <t; +e¢.

In fact, if A (t1,t,,t3) = 0 then the homogeneous system has a non-trivial solaiiort, andcs in
[ti,ty +¢). Thus, the nontrivial solution for the equation (W(t,t;) =Czus(t ty) +Tou,(tty) +

Cs us(t, t;) has six zeros in the semi-oscillatory interiig) t; + &) where[t,,t; +¢) C [tl,r(tl)) three of
six zeros are at the poityt, zero at the poirtt,, and two zeros at the poityt, this contradicts the concept of
semi-oscillatory interval.

In the system (25), the first three equations constiggstem of nonhomogeneous system
C3Uz(ta, t) + cauy(ty, ty) + csus(ty, t) = —cou,(ty, ty)
C3Us(ts, ty) + cary(ts, ty) + csus(ts, ty) = —cau,(ts, ty)
caUs(ts, ty) + cauiy(ts, ty) + c5ls(ts, ty) = —cyuy(ts, 1)
Using Grammar-method, we find the valuest, and c;. Note that, is a free parameter depends on

ty, t, and t5 that isc, = c,(t,,t,, t3) then the family of non-trivial solution for< (2121) — problem >
depends om, i.e.

5

Wai01 (6 t1) = c3up(t, ty) + z

i=3

A (ty,ta, t3)

A (tl, tz, t3) ui(t' tl) (26)
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Where A (ty,t,,t3), (i = 3,4,5) can be obtained from A (ty,ty,t3) replacing
(—cuy(ta ty)  —cuy(ts, ty)  —cotiy(ty, t1))T by first, second and third columns respectively.

From the equation (5) we find
A (b, tp,t3) = (t5 — £1)5(t, — £1)3d(ty, t5, t3)
Ag (ty, ty, t3) = (t3 — t)*(t, — t1)%d5(tq, t, t5)
Ay (tg, ty, t3) = (t3 — £1)3(t, — t1)%d4(tq, . t5)
Ag (tg, ty, t3) = (t3 — £1)3(t, — t1)%ds(tq, tp, t3)
Where
d(ty, ty, t3) = (t5 — t1)3Wo3(ta, t1) @ (t3, t1) + 6(ty, ty, t3)
d3(ty, ta, t3) = —(ts — t)*Pop (tz, t)a(ts, t1) + 85(ty, ty, ts)
dy(ty, tz, t3) = (t3 — t)*Wor (ty, t1)B(E5, t1) + 84(ty, t3, t3)

ds(ty, ty, t3) = —(tz — t1)3 o2 (b2, t)y (t3, t1) + 85(ty, to, t3)

_ [Woalts, t1)  os(ts, tq) _ [Woa(ts, ty)  os(ts, ty)
Pl t) =y et st )] D T ) (s t)
_ |Wos(ts,t1)  Pos(ts, ty) _ |Po3(tsit)  Poalts, ty)
Blts t2) = P13(ts, t)  Pis(ts, ty) 1t t) = P13(ts, t1)  Pralts ty)

6(t1, tz, t3) - 0and 6i(t1, tz, t3) -0 ) (l = 3,4‘,5) when tz d tl'

By substituting in equation (26), we obtain

1 d3(ty, tp, t3) + 83(tq, £y, t3)
W, () = —¢, [ —u,(t,ty) + usz(t,ty)
212 ! 2 ( 2 ! (tz - t1)(t3 - t1) d(tp ty, ts) + 5(t1, ty, t3) 3 !
1 d4(t1rt21t3) + 64(t11t2rt3)
- o u,(t, ty)
(ty — t1)(ts — )2 d(ty, by, t3) + 6(ty, by, t3)
1 ds(ty, ty, t3) + 65(ty, ty, t
+ . s(ti ta t3) + 05(ty, ty S)us(t,tl)
(ty — t1)(ts — t1)? 8(ty,tp, t3) + 8(ty, ty, t3)

Sincec, is an arbitrary constant, we assume thét,, t,, t;) = —(t, — t;)(t; — t;)%. By taking the limit of
both sides when, — t; we obtain,

: (G = t)* Yo (ty, t)a(Es, t)
o, Waraa Ot = = o e Yoy )~
(&5 — t1) Yoo (t1, t)B(Es, tl)u ) + Yoo (t1, )y (Es, t1)
Yo3(ty, t)e(Es, t1) e Yo3(ty, t)(Es, t1)

us(t, t) 27

Wheret; is the new position af;.

10
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Now taking the limit of both sides whég — t; we obtain,

_ Yoo (ty, t)y (1, t1)
Yo3(tr, )@ (ty, t1)

lim ( lim W4 (t, t1)> us(t,t;) (28)

t3-ty \t2-t
From equation (6) we find

Pop(ty, t1) = % , Yozt ty) = %, y(t,t) = % and o(t,, ty) = 28% By substituting in equation (28),

) 44
we find

lim < lim Wy, (¢, tl)) = 60us(t, t;) (29)

t3—tq \t2-t

Thus we proved that the family of non-trivial solutian(2121) — problem > contains a solution that
becomes a solution fax (51) — problem > whent, — t; and t; - t;

By the lemma (2-1) the function,,;(«, ty, t,, t3) is continuous from the right, then we get the following
inequality

inf Ta121(@, ty, £, t3) < inf  1p(aty) (30)

xSty <ty <tz<T127(xX xSty <rpq21(x

where

lim (lim 1395, (@, ty, t5, t3)) = 1p901(a, 1)
t3—ty -t

From equations (4) and (29), we find

inf T2121(@, ty, to, t3) = 12121 (@) BD
xSty <tp<tz<1p121(xX)
inf  ru(aty) =r15(a) (32)
xSty <T3121(X)

from (30), (31) and (32), we g&t;,; (@) < 15, ().
4 Conclusion

This study is an investigation of the distribution of zeobshe solutions of B order DE with boundary
conditions. Theorems 3-1, 3-2 and 3-3 state that the c@tcal intervalsry;,; (@), T1511(0) and ryq5,(a)
are less than or equal to the semi-critical interwgléx) whent, — t, and t; — t,. Therefore we conclude

thatmax{ 73111(a), 712211(@), 72121(@) } < 15y (0).

Competing Interests
Author has declared that no competing interests exist.

References

[1]  Zhou Y. The distribution of zeros of solutions of firstder functional differential equations. Bulletin
of the Australian Mathematical Society. 1999;59(02):305-314

11



Kathim; BJMCS, 18(6): 1-13, 2016; Article no.BIMZ&22

(2]

(3]

(4]

(3]

(6]

(7]

(8]

(9]

(10]

(11]

(12]

(13]

(14]

(19]

[16]

(17]

Domoshnitsky A, Maghakyan A, Vaysenberg V, Yavich Rodbdistribution of zeros of solutions to
functional equations. Functional Differential Equationsl 208(1-2):155.

Krasovsky IV. Asymptotic distribution of zeros of pobmials satisfying difference equations.
Journal of Computational and Applied Mathematics. 2003;150(1):57-70

Wend DV. On the zeros of solutions of some linear comgi#fgrential equations. Pacific J. Math.
1960;10:713-722.

Birkhoff GD. One the solutions of ordinary linear homogeneouterdiftial equations of the third
order. The Annals of Mathematics. 1911;12(3):103-127.

Liang FX. The distribution of zeros of solutions of first-ardelay differential equations. Journal of
Mathematical Analysis and Applications. 1994;186(2):383-392.

Zhang BG, Zhou Y. The distribution of zeros of solutions @fedéntial equations with a variable
delay. Journal of Mathematical Analysis and Applications. 2ZZ88(]1):216-228.

Alive RG. On the question of distribution of zeros of solutiondirear differential equations of
fourth order. Recnts. of Sci. Asp. Conf., Kazan Inst; 1962.

Peterson AC. Distribution of zeros solution of fourth orddferential equation. Pacific Journal of
Mathematics. 1969;30:751-764.

Jerry R. Ridenhouk. On the zeros of solutions of nth oiidear differential equations. Journal of
Differential Equations. 1974;16:45-71.

Al-Jawfi SA, Kathim AH. The laws of the distribution aéros of solutions of a linear differential
equation of order 5. Herald of Dagestan State Universi8pD2012;1:79-86.

Al-Jawfi SA. Limit relations between the semi-criticaltervals solutions of multipoint boundary
value problems for linear fifth-order differential equatidfierald of Dagestan State University
(DSU). 2012;6:61-66.

Al-Jawfi SA. On the disappearance non-trivial solasi@f multipoint boundary value problems in the
non-trivial in the case of a linear differential equatiohfifth order. Herald of Dagestan State
University (DSU). 2012;6:119-126.

Al-Jawfi SA. On nontrivial solutions of the homogeneous nmuidiint boundary value problems for
linear fifth-order differential equation. Herald of @stan State University (DSU). 2012;6:87-92.

Al-Jawfi SA, Jasim MD, Kathim AH. The laws of the dibtution of zeros of solutions boundary
value problem Vallée Poussin of linear differential &tpn of the fifth-order. Modern methods of
boundary value problems. Spring materials Voronezh Mathemha&&chool "Pontryagin Reading -
XXI». Voronezh. 2012;6-9.

Al-Jawfi SA, Kathim AH. The laws of the distribution a@&ros of solutions of a linear differential

equation of order 5. Collection of Scientific Articles omfdrials of the IV-th International Scientific-

Practical Conference, Stavropol, Samara State Aetespaiversity (September 28-29). 2012;103-
109.

Kathim AH. The distribution of zeros of the solutiondinBar homogeneous differential equations of
the sixth order using semi-critical intervals. Tikudnal of Pure Science. 2016;21(3):162-165.

12



Kathim; BJMCS, 18(6): 1-13, 2016; Article no.BIMZ&22

[18] BartuSek M, Dosl4 Z. Oscillatory solutions of nonlineaarth order differential equations with a
middle term. Electronic Journal of Qualitative Theorypdferential Equations2014.

[19] Saker SH, Arahet MA. Distributions of zeros of solusidor third-order differential equations with
variable coefficients. Mathematical Problems in Enginee20d5.

[20] Sansone G. Ordinary differential equations. Part 1, MosdovRyssian); 1953.

© 2016 Kathim; This is an Open Access article disttéed under the terms of the Creative Commons Attdb License
(http://creativecommons.org/licenses/byj4®@hich permits unrestricted use, distributiondareproduction in any medium, provided
the original work is properly cited.

Peer-review history:

The peer review history for this paper can be ac$rere (Please copy paste the total link in your
browser address bar)

http://sciencedomain.org/review-history/16254

13



