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Abstract 
 

In this study, the author investigates the distribution of the zeros of solutions of the sixth order linear 
homogenous differential equations (LHDE) with boundary conditions. An analytic approach is employed 
in this paper that is based on the semi critical intervals of boundary value problems. The main results are 
generalization of the results of LHDE of fifth order and expansion to four points boundary value 
problems. 
 

 
Keywords: Linear differential equations; distribution of zeros for the solution; boundary value problems; 

semi-oscillatory interval; semi-critical interval; fundamental normal solution.   
 

1 Introduction 
 
The studies on distribution of zeros of solutions of linear homogeneous differential equations (LHDE) goes 
back to 1960s. This field of study attracts many researchers and it gains much more interest for its 
applications to functional equations [1,2], difference equations [3], differential equations with complex 
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coefficients [4,5] differential equations with delay constant [6] and variable [7], and linear differential 
equations [8-19]. The research papers [8-10] adapted a geometric approach to study and prove the results of 
the distribution of zeros of solutions which is complicated and hard to prove because it depends on the 
fundamental solutions of the differential equations, so it requires more steps and sometimes needs to impose 
additional conditions to prove the results. Recently, an analytic approach is proposed by the authors of [11-
16] for distribution of zeros of solutions. The analytic approach employs the set of normal fundamental 
solutions to state and prove the results by using its properties of which makes it easier to prove [17].  
 
The authors of [11-16] investigated LHDE of the fifth order. In this paper we consider LHDE of the sixth 
order with four-points boundary conditions. The analytic approach is used to state and prove the properties 
of LHDE of the sixth order with four-points boundary conditions. Our main results in this study 
are   �������� ≤ �	����,    r�����α� ≤ r	��α� and   r�����α� ≤ r	��α�.  
   

2 Concepts and Terminology 
 
Consider the following boundary value problem 
 

x�
� + � g�
	

���
�x�x��� = 0                                                                                                                                   �1� 

                                         x�t�� = x́�t�� = ⋯ = x�����t�� = 0                                                                                                    (2) 
 
where α ≤ t� < t� < ⋯ < t� < ∞ , m is the number of points [t�, i = 1, … , m] , p� is the number of 
conditions at the points t�, i = 1,2, … , m,  g��x� are continuous on [∝, β�  
 
Problem (1) and (2) is called ≪( p�p� … p�� − problem ≫. 
 
When the point t� is fixed, the family of non-trivial solution of the problem ≪ �p�p� … p�� − problem ≫ is 
denoted by W�0�1…�2�t, t��. 
 
Definition 2-1 [12]: The interval [∝, β�, �a < � < 4 < ∞ �  is called semi-oscillatory, if any non-trivial 
solution for equation (1) has no more than five zeros [including multiplicity] in [∝, β�. The largest semi-
oscillatory interval that begins at the point α is denoted by 5α, r�α�6. 
 
Definition 2-2 [13]: The interval [∝, γ� where ≪ �p�p� … p�� − problem ≫ has a unique solution is  called 
semi-critical, and the largest semi- critical intervals that begins at the point α is denoted by [α, r�0�1…�2�α��. 
 
In this research paper, we discuss non- trivial solution of boundary value problem (1) and (2) in the semi-
critical intervals.  
 
Especially ≪ �3111� − problem ≫  where the solution has zero of multiplicity 3 at t = t� , a zero of 
multiplicity 1 at the point  t = t�, a zero of multiplicity 1 at the point t = t� and a zero of multiplicity 1 at 
the point t = t9, where α ≤ t� < t� < t� < r�����α� < t9. 
 
The first zero after t = t� is denoted by r�����α, t�, t�, t��, it's clearly that  
 r�����α� ≤ r�����α, t�, t�, :��  and r�����α� = inf  r�����α, t�, t�, t��.                                             (3) 

 
Generally, the first zero after t = t�=� is denoted by  r�0�1…�2�α, t�, t�, … , t�=��  for which 
 r�0�1…�2�α� = inf r�0�1…�2�α, t�, t�, … , t�=��                                                                                (4) 
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where p� + p� + ⋯ + p� = 6. 
 
Lemma 2-1 [14]: The function r�0�1…�2�α, t�, t�, … , t�=�� (where t� is fixed) is continuos from the right 
(the right limit exists) at the points  t�, t�, … , t�=� in the set R�=�[α,∞�. i.e. 
 lim@1→@1B@C→@CB⋮@2E0→@2E0B

r�0�1…�2�α, t�, t�, … , t�=�� = r�0�1…�2�α, t�, t��, t�� … , t�=�� �. 

 
Lemma 2-2 [14]: The set of fundamental normal solution for equation (1) (i.e. Fu��t, t��, j = 0,1, … , m − 1I) 
with respect to t� has the following  
 u�����t, t�� = �t − t���=�ψ���t, t��,    i, j = 0,1, … , m − 1.                                                                     (5) 

 
where 

ψ���t�, t�� = JKL����@0,@0�
��=��!     if     j ≥ i0                 if    j < O                            P                                                                             (6) 

 

3 Main Results 
 
In this section we present three theorems for the distribution of zeros for the solutions of LHDEs in the semi-
critical intervals. 
 
Theorem 3-1: In the interval [�, ���������, any non-trivial solution (for the equation (1)) that has a zero at t� of multiplicity five cannot have a simple zero  to the right of  t�, i.e.   �������� ≤ �	����, when :� →:�  QRS :� → :� . 
 
Proof: First of all we show that the family of non-trivial solution for ≪ �3111� − problem ≫ at the fixed 
point t� contains at least one solution that becomes a non-trivial solution for ≪ �51� − problem ≫  when  :� → :�  QRS :� → :� . 
 

limUC→U0 V WOXU1→U0 Y���� �:, :��Z = Y	��:, :�� 

 
From Vallee Poisinee theorem, for each t� ∈ [α, r�α�� , there exists a semi-oscillatory interval [:�, ��:��� ([20]). Choose ε > 0, such that [t�, t� + ε� ⊂ [t�, r�t���. 
 
Let ̂ ��:, :��, ^��:, :��, … , ^	�:, :�� be a set of fundamental normal solution for (1) with respect to :�   i.e. 
 

_̂�`��:�, :�� = a0     Ob   O ≠ d1     Ob  O = d P 
 
Thus, the family of non-trivial solution for the equation (1) can be written as: 
 

W�t, t�� = � c�u��t, t��                                                                                                                                 �7�	
���0

 

 
where c�  is an arbitrary constant. 
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From the boundary condition for  ≪ �3111� − problem ≫ we get the following homogeneous system. 
 

� c�u��g���t�, t�� = 0                                                                                                                                        �8�	
���0

 

 
where  

 

k� = 0,1, … , p� − 1;   i = 2,3,4;  � p� = 6�
���  

 
A necessary and sufficient condition for the system (8) to have a non-trivial solution (for unknown c�,s) is: 
 l�:�, :�, :�, :9� = det n _̂�op��:` , :��: d = 3,4,5 ;    r` = 0,1, … , s` − 1 ;   O = 2,3,4t = 0    

 
The rank of the matrix of system (8) is equal to 2 and it's different from zero. 
 
that is  
 △ �:�, :�, :�� = v^9�:�, :�� ^	�:�, :��^9�:�, :�� ^	�:�, :��v ≠ 0 

 
where ≤ :� < :� < :� < :� + w . 
 
In fact, if △ �:�, :�, :�� = 0 then the homogeneous system has a non-trivial solution cx9  and cx	   in [:�, :� +w�.Thus, the nontrivial solution for the equation (1): Y�:, :�� = y9̅ ^9�:, :�� + y	̅ ^	�:, :�� has six zeros in 
the [:�, :� + w�  where [:�, :� + w� ⊂ 5:�, ��:��6 four of six zeros are at the point t�, zero at the point t�, and 
zero at the point t�, this contradicts the concept of  semi-oscillatory interval. 
 
From the system (8), the first two equations constitute a system of nonhomogeneous system 
 y9^9�:�, :�� + y	^	�:�, :�� = −y�^��:�, :�� 

 y9^9�:�, :�� + y	^	�:�, :�� = −y�^��:�, :�� 
 
Using Grammar-method, we find the values of c9 and c	 . Note that c�  is a free parameter depends on t�, t� and t� that is c� = c��t�, t�, t�� then the general of non-trivial solution for ≪ �3111� − problem ≫ 
depends on c� i.e. 
 

W�����t, t�� = c�u��t, t�� + △9 �t�, t�, t��△ �t�, t�, t�� u9�t, t�� + + △	 {t�, t�,@C6△ �t�, t�, t�� u	�t, t��                                 �9�  
 
where △� �t�, t�, :��, i = 4,5 can be obtained from △ �t�, t�, :�� replacing �−y�^��:�, :�� −y�^��:�, :���}  
by first and second columns respectively. 
 
From the equations (5) and (9) we find 
 

 Y�����:, :�� = −y� ~−^��:, :�� + 1�:� − :���:� − :�� ��:�, :�, :����:�, :�, :�� ^9�:, :��
+ 1�:� − :���  4�:�, :�, :����:�, :�, :�� ^	�:, :��� 
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where 
 ��:�, :�, :�� = v��9�:�, :�� �:� − :����	�:�, :����9�:�, :�� �:� − :����	�:�, :��v 

 

��:�, :�, :�� = v����:�, :�� �:� − :�����	�:�, :������:�, :�� �:� − :�����	�:�, :��v 
 4�:�, :�, :�� = v�:� − :����9�:�, :�� ����:�, :���:� − :����9�:�, :�� ����:�, :��v 

 
Since c�  is an arbitrary constant, we assume that y��:�, :�, :�� = �:� − :���:� − :��. By taking the limit of 
both sides when t� → t� we obtain,  
 

WOXU1→U0 Y�����:, :�� = − �:�̅ − :������:�, :����9�:�, :�� ^9�:, :�� + ��9�:�̅, :������:�, :����	�:�̅, :����9�:�, :�� ^	�:, :��   
 
where :�̅ is the new position of  :�. 
 
Now we taking the limit of both sides when t̅� → t� we obtain, 
 

WOXUC̅→U0� WOXU1→U0 Y�����:, :��� = ����:�, :����	�:�, :�� ^	�:, :��                                                                                     �10�  
 

From equation (6) we find ����:�, :�� = ��! , ��	�:�, :�� = �	! . By substituting in equation (10), we find 

 limUC̅→U0 � limU1→U0 Y�����:, :��� = 20^	�:, :��                                                                                                   �11� 

 
Thus we proved that the family of non-trivial solution  ≪ �3111� − problem ≫ contains a solution that 
becomes a solution for ≪ �51� − problem ≫ when t� → t� QRS :� → :� . 
 
From the lemma (2-1) the function  �������, :�, :�:�� is continuous from the right, then we get the following 
inequality 
 ORb∝�U0�U1�UC��C000�∝��������, :�, :�, :�� ≤ ORb∝�U0��C000�∝��������, :��                                                          �12� 

 
where  
 WOXUC→U0� WOXU1→U0 �������, :�, :�, :��� = �������, :�� 

 
From equations (3) and (11), we find  
 ORb∝�U0�U1�UC��C000�∝��������, :�, :�, :�� = ��������                                                                                     �13� 

 ORb∝�U0��C000�∝��������, :�� = �	����                                                                                                               �14� 

 
And from (12), (13) and (14), we get �������� ≤ �	����. 
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Theorem 3-2: In the interval [�, ���������, any non-trivial solution (for the equation (1)) that has a zero at t�  of multiplicity five cannot have a simple zero to the right of  t�  i.e.   r�����α� ≤ r	��α�, when :� →:�  QRS :� → :� . 
 
Proof: Form Vallee Poisinee theorem [20], (for each t� ∈ [α, r�α��, there exists a semi-oscillatory interval [t�, r�t���. Choose ε > 0, such that [t�, t� + ε� ⊂ [t�, r�t���. 
 
Let u��t, t��, u��t, t��, … , u	�t, t�� be a set of fundamental normal solution for (1) with respect to :�. 
 
Thus, the family of non-trivial solution for the equation (1) can be written as: 
 

W�t, t�� = � c�u��t, t��                                                                                                                               �15�	
���0

 

 
From the boundary condition for ≪ �2211� − problem ≫ we get the following homogeneous system. 
 

� c�u��g���t�, t�� = 0                                                                                                                                     �16�	
���0

 

 
where  

 

k� = 0,1, … , p� − 1;   i = 2,3,4; � p�
�

��� = 6 

 

A necessary and sufficient condition for the system (16) to have a non-trivial solution (for unknown c�,s) is: 
 D�t�, t�, :�, :9� = det nu��g���t�, t��: j = 2,3,4,5 ;    k� = 0,1, … , p� − 1;   i = 2,3,4t = 0    

 
The rank of the matrix of system (16) is equal to 3 and it's different from zero. 
 
That is  
 

△ �:�, :�, :�� = �^��:�, :�� ^9�:�, :�� ^	�:�, :��^́��:�, :�� ^́9�:�, :�� ^́	�:�, :��^��:�, :�� ^9�:�, :�� ^	�:�, :��� ≠ 0 

 
where α ≤ t� < t� < t� < t� + ε . 
 
In fact, if △ �:�, :�, :�� = 0  then the homogeneous system has a non-trivial solution cx� ,  cx9  and cx	   in [t�, t� + ε�.  Thus, the nontrivial solution for the equation (1), W�t, t�� = cx� u��t, t�� + cx9 u9�t, t�� +cx	 u	�t, t�� has six zeros in the semi-oscillatory interval [t�, t� + ε�  where [t�, t� + ε� ⊂ 5t�, r�t��6 three of 
six zeros are at the point t�, two zeros at the point t�, and zero at the point t�,  this contradicts the concept of  
semi-oscillatory interval. 
 
In the system (16), the first three equations constitute a system of nonhomogeneous equation  
 c�u��t�, t�� + c9u9�t�, t�� + c	u	�t�, t�� = −c�u��t�, t�� 

 c�u�́�t�, t�� + c9u9́�t�, t�� + c	ú	�t�, t�� = −c�u�́�t�, t�� 
 c�u��t�, t�� + c9u9�t�, t�� + c	u	�t�, t�� = −c�u��t�, t�� 
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Using Grammar-method, we find the values of y�, c9 and c	. Note that c� is a free parameter depends on t�, t� and t� that is c� = c��t�, t�, t�� then the family of non-trivial solution for  ≪ �2211� − problem ≫ 
depends on c� i.e. 
 

W�����t, t�� = c�^��:, :�� + � △` �:�, :�, :��△ �:�, :�, :�� ^`�:, :��	
`��                                                                          �17� 

 
where △� �:�, :�, :�� , � i = 3,4,5�  can be obtained from △ �:�, :�, :��  replacing �−y�^��:�, :�� −y�^́��:�, :�� −y�^��:�, :���} by first, second and third columns respectively. 
 
From the equation (5) we find 
 △ �:�, :�, :�� = �:� − :����:� − :��	S�:�, :�, :�� 

 △� �:�, :�, :�� = �:� − :����:� − :��9S��:�, :�, :�� 
 △9 �:�, :�, :�� = �:� − :����:� − :��9S9�:�, :�, :�� 
 △	 �:�, :�, :�� = �:� − :����:� − :���S	�:�, :�, :�� 

 
Where 
 S�:�, :�, :�� = �:� − :�������:�, :����:�, :�� + ��:�, :�, :�� 

 S��:�, :�, :�� = �:� − :��9����:�, :����:�, :�� + ���:�, :�, :�� 
 S9�:�, :�, :�� = −�:� − :�������:�, :��4�:�, :�� + �9�:�, :�, :�� 
 S	�:�, :�, :�� = −�:� − :�������:�, :����:�, :�� + �	�:�, :�, :�� 
 ��:�, :�� = v��9�:�, :�� ��	�:�, :����9�:�, :�� ��	�:�, :��v, α�t�, t�� = v��9�:�, :�� ��	�:�, :����9�:�, :�� ��	�:�, :��v 
 

β�t�, t�� = v����:�, :�� ��	�:�, :������:�, :�� ��	�:�, :��v, γ�t�, t�� = v����:�, :�� ��9�:�, :������:�, :�� ��9�:�, :��v 
 ��:�, :�, :�� → 0 QRS �`�:�, :�, :�� → 0, �O = 3,4,5 �  �ℎ�R :� → :�. 

 
By substituting in equation (17), we find  
 

W�����t, t�� = −c� ~−u��t, t�� + 1�:� − :���:� − :�� d��:�, :�, :�� + ���:�, :�, :��d�:�, :�, :�� + ��:�, :�, :�� u��t, t��
+ 1�:� − :���:� − :�� d9�:�, :�, :�� + �9�:�, :�, :��d�:�, :�, :�� + ��:�, :�, :�� u9�t, t��
+ 1�:� − :���:� − :��� S	�:�, :�, :�� + �	�:�, :�, :����:�, :�, :�� + ��:�, :�, :�� ^	�:, :��� 

 
Since c� is an arbitrary constant, we assume that  c��:�, :�, :�� = −�t� − t����:� − :��. By taking the limit of 
both sides when t� → t� we obtain, 
 



 
 
 

Kathim; BJMCS, 18(6): 1-13, 2016; Article no.BJMCS.28722 
 
 
 

8 
 
 

lim@1→@0 W�����t, t�� = ����:�̅, :����:�, :������:�̅, :����:�, :�� u	�t, t��                                                                                   �18� 

 
Where :�̅ is the new position of  :�. 
 
now taking the limit of both sides when t̅� → t� we obtain, 
 

WOX UC̅→U0 V WOXU1→U0Y�����:, :��Z = ����:�, :����:�, :������:�, :����:�, :�� u	�t, t��                                                                     �19� 
 

and from equation (6) we find 
 ����:�, :�� = ��  , ����:�, :�� = �
 , ��:�, :�� = ��99 and  ��:�, :�� = ����� . By substituting in equation (19), 

we find  
 

WOX UC̅→U0 V WOXU1→U0Y�����:, :��Z = 60^	�:, :��                                                                                                   �20� 

 
Thus we proved that the family of non-trivial solution ≪ �2211� − problem ≫ contains a solution that 
becomes a solution for ≪ �51� − problem ≫ when :� → :�  QRS :� → :� . 
 
From the lemma (2-1) the function �������, :�, :�, :�� is continuous from the right, then we get the following 
inequality 
 ORb∝�U0�U1�UC��1100�∝��������, :�, :�, :�� ≤ ORb∝�U0��1100�∝��������, :��                                                          �21� 

 
where  
 WOXU1→U0� WOXU1→U0 �������, :�, :�, :��� = �������, :�� 

 
From equations (4) and (20), we find  
 ORb∝�U0�U1�UC��1100�∝��������, :�, :�, :�� = ��������                                                                                     �22� 

 ORb∝�U0��1100�∝��������, :�� = �	����                                                                                                               �23� 

 
From (21), (22) and (23), we get �������� ≤ �	���� . 
 
Theorem 3-3: In the interval [�, ���������, any non-trivial solution (for the equation (1)) that has a zero at t�  of multiplicity five cannot have a simple zero to the right of t�  i.e.   r�����α� ≤ r	��α� , when :� →:�  QRS :� → :� . 
 
Proof: Form Vallee Poisinee theorem ([20]), for each t� ∈ [α, r�α��, there exists a semi-oscillatory interval [t�, r�t���. Choose ε > 0, such that [t�, t� + ε� ⊂ [t�, r�t���. 
 
Let u��t, t��, u��t, t��, … , u	�t, t�� be a set of fundamental normal solution for (1) with respect to :�. 
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Thus, the family of non-trivial solution for the equation (1) can be written as: 
 

W�t, t�� = � c�u��t, t��                                                                                                                               �24�	
���0

 

 
From the boundary condition for ≪ �2121� − problem ≫ we get the following homogeneous system. 
 

� c�u��g���t�, t�� = 0                                                                                                                                     �25�	
���0

 

 
where  

 

k� = 0,1, … , p� − 1;    i = 2,3,4 ;   � p�
�

��� = 6 

 
A necessary and sufficient condition for the system (25) to have a non-trivial solution (for unknown c�,s) is: 
 D�t�, t�, :�, :9� = det nu��g���t�, t��: j = 2,3,4,5 ;    k� = 0,1, … , p� − 1 ;   i = 2,3,4t = 0    

 
The rank of the matrix of system (25) is equal to 3 and it's different from zero. 
 
That is  
 

△ �:�, :�, :�� = �^��:�, :�� ^9�:�, :�� ^	�:�, :��^��:�, :�� ^9�:�, :�� ^	�:�, :��^́��:�, :�� ^́9�:�, :�� ^́	�:�, :��� ≠ 0 

 
where α ≤ t� < t� < t� < t� + ε . 
 
In fact, if △ �:�, :�, :�� = 0  then the homogeneous system has a non-trivial solution cx� , cx9  and cx	   in [t�, t� + ε�.  Thus, the nontrivial solution for the equation (1), W�t, t�� = cx� u��t, t�� + cx9 u9�t, t�� +cx	 u	�t, t�� has six zeros in the semi-oscillatory interval [t�, t� + ε�  where [t�, t� + ε� ⊂ 5t�, r�t��6 three of 
six zeros are at the point t�, zero at the point t�, and two zeros at the point t�, this contradicts the concept of  
semi-oscillatory interval. 
 
In the system (25), the first three equations constitute a system of nonhomogeneous system  
 c�u��t�, t�� + c9u9�t�, t�� + c	u	�t�, t�� = −c�u��t�, t�� 

 c�u��t�, t�� + c9^9�t�, t�� + c	^	�t�, t�� = −c�u��t�, t�� 
 c�u�́�t�, t�� + c9^9́�t�, t�� + c	ú	�t�, t�� = −c�^�́�t�, t�� 

 
Using Grammar-method, we find the values of y�, c9 and c	. Note that c� is a free parameter depends on t�, t� and t� that is c� = c��t�, t�, t�� then the family of non-trivial solution for  ≪ �2121� − problem ≫ 
depends on c�   i.e. 
 

W�����t, t�� = c�^��:, :�� + � △` �:�, :�, :��△ �:�, :�, :�� ^`�:, :��	
`��                                                                          �26� 
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Where △� �:�, :�, :��, � i = 3,4,5�  can be obtained from △ �:�, :�, :��  replacing �−y�^��:�, :�� −y�^��:�, :�� −y�^́��:�, :���} by first, second and third columns respectively. 
 
From the equation (5) we find 
 △ �:�, :�, :�� = �:� − :��	�:� − :���S�:�, :�, :�� 

 △� �:�, :�, :�� = �:� − :��9�:� − :���S��:�, :�, :�� 
 △9 �:�, :�, :�� = �:� − :����:� − :���S9�:�, :�, :�� 
 △	 �:�, :�, :�� = �:� − :����:� − :���S	�:�, :�, :�� 

 
Where 
 S�:�, :�, :�� = �:� − :�������:�, :����:�, :�� + ��:�, :�, :�� 

 S��:�, :�, :�� = −�:� − :��9����:�, :����:�, :�� + ���:�, :�, :�� 
 S9�:�, :�, :�� = �:� − :��9����:�, :��4�:�, :�� + �9�:�, :�, :�� 
 S	�:�, :�, :�� = −�:� − :�������:�, :����:�, :�� + �	�:�, :�, :�� 
 ��:�, :�� = v��9�:�, :�� ��	�:�, :����9�:�, :�� ��	�:�, :��v , α�t�, t�� = v��9�:�, :�� ��	�:�, :����9�:�, :�� ��	�:�, :��v 
 

β�t�, t�� = v����:�, :�� ��	�:�, :������:�, :�� ��	�:�, :��v , γ�t�, t�� = v����:�, :�� ��9�:�, :������:�, :�� ��9�:�, :��v 
 ��:�, :�, :�� → 0 QRS �`�:�, :�, :�� → 0 , �O = 3,4,5 �   �ℎ�R :� → :�. 

 
By substituting in equation (26), we obtain  
 

W�����t, t�� = −c� ~−u��t, t�� + 1�:� − :���:� − :�� d��:�, :�, :�� + ���:�, :�, :��d�:�, :�, :�� + ��:�, :�, :�� u��t, t��
− 1�:� − :���:� − :��� d9�:�, :�, :�� + �9�:�, :�, :��d�:�, :�, :�� + ��:�, :�, :�� u9�t, t��
+ 1�:� − :���:� − :��� S	�:�, :�, :�� + �	�:�, :�, :����:�, :�, :�� + ��:�, :�, :�� ^	�:, :��� 

 
Since c� is an arbitrary constant, we assume that c��:�, :�, :�� = −�:� − :���t� − t���. By taking the limit of 
both sides when t� → t� we obtain, 
 

lim@1→@0 W�����t, t�� = �:�̅ − :�������:�, :����:�̅, :������:�, :����:�̅, :�� ^��:, :�� − �:�̅ − :�� ����:�, :��4�:�̅, :������:�, :����:�̅, :�� ^9�:, :�� + ����:�, :����:�̅, :������:�, :����:�̅, :�� ^	�:, :��                                             �27� 

 
Where :�̅ is the new position of :�. 
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Now taking the limit of both sides when t̅� → t� we obtain, 
 

WOX UC̅→U0 V WOXU1→U0Y�����:, :��Z = ����:�, :����:�, :������:�, :����:�, :�� u	�t, t��                                                                     �28� 
 

From equation (6) we find 
 ����:�, :�� = ��  , ����:�, :�� = �
 , ��:�, :�� = ��99  and  ��:�, :�� = ����� . By substituting in equation (28), 

we find  
 

WOX UC̅→U0 V WOXU1→U0Y�����:, :��Z = 60^	�:, :��                                                                                                   �29� 

 
Thus we proved that the family of non-trivial solution ≪ �2121� − problem ≫ contains a solution that 
becomes a solution for ≪ �51� − problem ≫ when :� → :�  QRS :� → :� . 
 
By the lemma (2-1) the function �������, :�, :�, :�� is continuous from the right, then we get the following 
inequality 
 ORb∝�U0�U1�UC��1010�∝��������, :�, :�, :�� ≤ ORb∝�U0��1010�∝��������, :��                                                         �30� 

 
where  
 WOXUC→U0� WOXU1→U0 �������, :�, :�, :��� = �������, :�� 

 
From equations (4) and (29), we find  
 ORb∝�U0�U1�UC��1010�∝��������, :�, :�, :�� = ��������                                                                                     �31� 

 ORb∝�U0��1010�∝��������, :�� = �	����                                                                                                               �32� 

 
from (30), (31) and (32), we get �������� ≤ �	����. 
 

4 Conclusion 
 
This study is an investigation of the distribution of zeros of the solutions of 6th order DE with boundary 
conditions. Theorems 3-1, 3-2 and 3-3 state that the semi-critical intervals ��������,    r�����α� and   r�����α� 
are less than or equal to the semi-critical intervals �	���� when :� → :�  QRS :� → :�. Therefore we conclude 
that XQ��   ��������,    �������� ,    �������� � ≤ r	��α�. 
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