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Abstract

This article introduces a general result on the covariance between two Ito integrals driven by two
different Brownian motions, which slightly generalizes the isometry property. This result finds
applications in mathematical finance, e.g. it enables to determine the probability distribution of
the integrated interest rate process in exponential-affine models of the yield curve.
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1 Introduction

Let be a standard Brownian motion defined on a filtered probability space (Ω,F ,Ft,P).
One of the main properties of the Ito integral is the isometry, which states that, for any function

Y
(
ω ∈ Ω, t ∈ R+

)
such that the integral

t∫
0

YsdWs exists, ∀0 ≤ t < ∞, the second order moment of
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the integral is given by :

E

[(
t∫
0

YsdWs

)2
]
=

t∫
0

E
[
Y 2
s

]
ds (1)

A minor generalization is to consider the covariation between
t∫
0

Y
(1)
s dWs and

t∫
0

Y
(2)
s dWs. As long

as the functions Y (1) and Y (2) are both predictable with respect to the same filtration, it is an
elementary extension to obtain :

cov

[
t∫
0

Y
(1)
s dWs,

t∫
0

Y
(2)
s dWs

]
=

t∫
0

E
[
Y

(1)
s Y

(2)
s

]
ds (2)

This is a consequence of the fact that, in general, any isometric mapping between two real normed
inner product spaces preserves inner products.

However, further results on the covariance between Ito integrals may be needed in stochastic models
involving multiple random factors with non-zero correlation. Indeed, considering each random factor
in time as an Ito integral, the integrands we are then dealing with are no longer functions of the
same Brownian motion, and they are not functions of independent Brownian motions either, i.e.
we are confronted with the problem of computing :

cov

[
t1∫
0

Y
(1)
s dW

(1)
s ,

t2∫
0

Y
(2)
s dW

(2)
s

]
, (t1, t2) ∈ R2

+ (3)

where Y (1) and Y (2) may be functions of both Brownian motionsW (1) andW (2), with d
[
W (1),W (2)

]
(t) ̸= 0

In this paper, a solution of this problem is given under conditions that remain not too restrictive
for a fairly large number of applications, allowing notably for random integrands. This result turns
out to be useful for applications of stochastic calculus to finance. In particular, it is instrumental in
performing analytical calculations related to yield curve models such as the exponential affine one,
which is widely used in the research departments of large financial institutions around the world.

2 General Results

Let
{
W

(1)
t , t ≥ 0

}
and

{
W

(2)
t , t ≥ 0

}
be two standard Brownian motions with correlation coefficient

ρ.

The integrals
t1∫
0

Y
(1)
s dW

(1)
s and

t2∫
0

Y
(2)
s dW

(2)
s , (t1, t2) ∈ R2

+, are defined under the condition that

Y (1) and Y (2) are square integrable and predictable. This raises the question of the existence of a
unique filtration with respect to which both Y (1) and Y (2) would be measurable. That filtration
would not simply be the product of the natural filtrations of each Brownian motion, as is the case
for multidimensional Brownian motion, because of the non-independence of W (1) and W (2). It
would have to be an expanded filtration. The subject of the expansion of filtrations began to be
actively investigated at the end of the previous century by a paper of K. Itô himself [1] which showed
that if {Wt, t ≥ 0}is a standard Brownian motion, then one can expand the natural filtration Ft

of Wt by adding the σ−algebra generated by the random variable W1 to all Ft of the filtration.
It was followed by a number of papers (see, e.g., [2], [3], [4]) dealing with the conditions under
which semimartingales remain semimartingales in a filtration expanded by a random variable or a
stochastic process. A survey of this literature can be found in [5]. Since our correlated Brownian
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motions W (1) and W (2)are defined on spaces equipped with a probability measure, i.e. a σ− finite

measure, the existence of an expanded filtration for the pair
(
W (1),W (2)

)
is guaranteed by the

Hahn–Kolmogorov theorem ([6]). However, a rigorous use of such a filtration would require a
redefinition of some of the tools used when working with the natural filtrations of W (1) and W (2).
For example, it is well-known that, if W (1) and W (2)are independent, then the process defined
by the product W (1)W (2) is a martingale. But this cannot be proven simply by conditioning

E
[
W

(1)
t+sW

(2)
t+s

]
, ∀s > 0, on either the natural filtration F (1)

t of W (1)or the natural filtration F (2)
t of

W (2). Indeed, either conditioning is performed with respect to F (1)
t , which yields:

E
[
W

(1)
t+sW

(2)
t+s

∣∣∣F (1)
t

]
=

E
[
W

(1)
t+s

∣∣∣F (1)
t

]
E
[
W

(2)
t+s

∣∣∣F (1)
t

]
= W

(1)
t E

[
W

(2)
t+s

∣∣∣F (1)
t

]
̸= W

(1)
t W

(2)
t

(4)

or conditioning is performed with respect to F (2)
t , which yields:

E
[
W

(1)
t+sW

(2)
t+s

∣∣∣F (2)
t

]
=

E
[
W

(1)
t+s

∣∣∣F (2)
t

]
E
[
W

(2)
t+s

∣∣∣F (2)
t

]
= E

[
W

(1)
t+s

∣∣∣F (2)
t

]
W

(2)
t ̸= W

(1)
t W

(2)
t

(5)

Whereas if one assumes the existence of a larger filtration F (12)
t with respect to which both W (1)

and W (2)are simultaneously measurable, and such that the properties verified under F (1)
t and F (2)

t

are also verified under F (12)
t , then one immediately obtains:

E
[
W

(1)
t+sW

(2)
t+s

∣∣∣F (12)
t

]
= E

[
W

(1)
t+s

∣∣∣F (12)
t

]
E
[
W

(2)
t+s

∣∣∣F (12)
t

]
= W

(1)
t W

(2)
t (6)

But (6) is wrong because, although the Brownian motions W (1) and W (2) are martingales with

respect to their natural filtrations F (1)
t and F (2)

t , respectively, they are not martingales with respect

to the larger filtration F (12)
t .

Since the purpose of this paper is not to address deeps questions of the general theory, but to provide
a simple computational tool that slightly generalizes the isometry property of the Ito integral, we
will circumvent the need for an expansion of filtration, i.e. we will refer exclusively to the natural
filtrations of W (1) and W (2), by appropriately restricting the class of permissible Ito integrals.
Fortunately, such a restriction still allows to solve a number of practical problems, as will be
illustrated in Section 3.

We can now state our general result.

Theorem

Let
{
W

(1)
t , t ≥ 0

}
and

{
W

(2)
t , t ≥ 0

}
be two standard Brownian motions with correlation coefficient

ρ.

The natural filtrations generated by
{
W

(1)
t , t ≥ 0

}
and

{
W

(2)
t , t ≥ 0

}
are denoted by F (1)

t and F (2)
t ,

respectively. Let Y
(1)
t = f

(
t,W

(1)
t

)
and Y

(2)
t = g

(
t,W

(2)
t

)
, where f and g are non-anticipating,

right-continuous real functions with left limits.

Then, ∀0 ≤ t ≤ T , we have :

cov

[
t∫
0

Y
(1)
s dW

(1)
s ,

T∫
0

Y
(2)
s dW

(2)
s

]
= ρ

t∫
0

E
[
Y

(1)
s Y

(2)
s

]
ds (7)

3
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Remark 1 : the fact that no expansion of filtration is required relies on the restriction that the
function Y

(1)
t may depend on W

(1)
t but not on W

(2)
t

Remark 2 : the result still holds if the functions Y
(1)
t and Y

(2)
t are left-continuous with right limits

Proof

The function f is continuous and F (1)
t −adapted, while the function g is continuous and F (2)

t −adapted.

Therefore, the process
{
Y

(1)
t , t ≥ 0

}
is predictable with respect to F (1)

t and the process
{
Y

(2)
t , t ≥ 0

}
is predictable with respect toF (2)

t . Moreover, both
{
Y

(1)
t , t ≥ 0

}
and

{
Y

(2)
t , t ≥ 0

}
are bounded on

any closed time interval [0, T ] and thus square integrable. Hence, the integrals I1 (t) =
t∫
0

Y
(1)
s dW

(1)
s

and I2 (t) =
t∫
0

Y
(2)
s dW

(2)
s are Ito integrals, with I1 (t) being an F (1)

t −martingale with zero expectation

and I2 (t) being an F (2)
t −martingale with zero expectation, and we have:

cov [I1 (t) , I2 (T )]

= E

[
t∫
0

Y
(1)
s dW

(1)
s

T∫
0

Y
(2)
s dW

(2)
s

]
= E

[
t∫
0

Y
(1)
s dW

(1)
s

(
t∫
0

Y
(2)
s dW

(2)
s +

T∫
t

Y
(2)
s dW

(2)
s

)]
(8)

By conditioning with respect to F (1)
t , and by using the F (1)

t −measurability of I1 (t) as well as the

independence of
T∫
t

Y
(2)
s dW

(2)
s with respect to F (1)

t , we obtain :

E

[
t∫
0

Y
(1)
s dW

(1)
s

T∫
t

Y
(2)
s dW

(2)
s

]
= E

[
E

[
t∫
0

Y
(1)
s dW

(1)
s

T∫
t

Y
(2)
s dW

(2)
s

∣∣∣F (1)
t

]]
(9)

= E

[
t∫
0

Y
(1)
s dW

(1)
s E

[
T∫
t

Y
(2)
s dW

(2)
s

∣∣∣F (1)
t

]]
= E

[
t∫
0

Y
(1)
s dW

(1)
s E

[
T∫
t

Y
(2)
s dW

(2)
s

]]
= 0 (10)

Notice that the independence of
T∫
t

Y
(2)
s dW

(2)
s with respect to F (1)

t does not derive from any independence

between the processes {I1 (t) , t ≥ 0} and {I2 (t) , t ≥ 0}, since
{
W

(1)
t , t ≥ 0

}
and

{
W

(2)
t , t ≥ 0

}
have

non-zero correlation, but from the Markov property of
{
W

(2)
t , t ≥ 0

}
.

Since
{
Y

(1)
t , t ≥ 0

}
and

{
Y

(2)
t , t ≥ 0

}
are right-continuous, square integrable processes with left

limits, they can be approximated, respectively, by the following simple processes:

Ỹ
(1)
t =

n−1∑
i=0

ϕ
(1)
i I(ti,ti+1]

(t) (11)

Ỹ
(2)
t =

n−1∑
i=1

ϕ
(2)
i I(ti,ti+1]

(t) (12)

where :

- n is the number of points in a sequence of partitions of [0 = t0, t = tn]

- ϕ
(1)
i and ϕ

(2)
i are real constants if

(
Y (1), Y (2)

)
is a pair of deterministic processes

- ϕ
(1)
i and ϕ

(2)
i are square integrable real random variables if

(
Y (1), Y (2)

)
is a pair of random

processes;

the ϕ
(1)
i

′s are then F (1)
ti

−measurable, while the ϕ
(2)
i

′s are F (2)
ti

−measurable

- ϕ
(1)
t0

= Y
(1)
t0

and ϕ
(2)
t0

= Y
(2)
t0

4
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It is a fundamental result from the theory of continuous-time processes that the integrals I1 (t) and
I2 (t) can be defined as the following limits :

I1 (t) = lim
n→∞

n−1∑
i=0

ϕ
(1)
i

(
W

(1)
ti+1

−W
(1)
ti

)
(13)

I2 (t) = lim
n→∞

n−1∑
i=0

ϕ
(2)
i

(
W

(2)
ti+1

−W
(2)
ti

)
where convergence is in mean square [7] . Hence, as n → ∞,

(14)

By conditioning on F (1)
ti∧tj

, we have:

(15)

(16)

(17)

Denoting by
{
W̄

(2)
t , t ≥ 0

}
a standard Brownian motion independent of

{
W

(1)
t , t ≥ 0

}
defined on

the same filtered probability space as
{
W

(2)
t , t ≥ 0

}
, the following orthogonal decomposition of

W (2) with respect to W (1) holds :

W
(2)
t = ρW

(1)
t +

√
1− ρ2W̄

(2)
t

(18)

Therefore,

E
[(

W
(1)
ti+1

−W
(1)
ti

)(
W

(2)
tj+1

−W
(2)
tj

)]
= E

[(
W

(1)
ti+1

−W
(1)
ti

)(
ρW

(1)
tj+1

+
√

1− ρ2W̄
(2)
tj+1

− ρW
(1)
tj

−
√

1− ρ2W̄
(2)
tj

)]
(19)

= ρcov
[
W

(1)
ti+1

,W
(1)
tj+1

]
− ρcov

[
W

(1)
ti+1

,W
(1)
tj

]
− ρcov

[
W

(1)
ti

,W
(1)
tj+1

]
+ ρcov

[
W

(1)
ti

,W
(1)
tj

]
(20)

5
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If i and j are two natural integers such that i < j, then sup
i

((i+ 1)− j) = 0; similarly, if j < i,

then sup
j

((j + 1)− i) = 0. Thus,

E
[(

W
(1)
ti+1

−W
(1)
ti

)(
W

(2)
tj+1

−W
(2)
tj

)]
= ρ (ti+1 − ti+1 − ti + ti) I{i<j} + ρ (tj+1 − tj − tj+1 + tj) I{i>j} = 0 (21)

Hence, S2 = 0.

Next, by conditioning w.r.t. F (1)
ti

, we have :

S1 =
n−1∑
i=0

E
[
E
[
ϕ
(1)
i ϕ

(2)
i

(
W

(1)
ti+1

−W
(1)
ti

)(
W

(2)
ti+1

−W
(2)
ti

) ∣∣∣F (1)
ti

]]
(22)

=
n−1∑
i=0

E
[
ϕ
(1)
i E

[
ϕ
(2)
i

∣∣∣F (1)
ti

]
ρ (ti+1 − ti)

]
(24)

= ρ
n−1∑
i=0

E
[
ϕ
(1)
i E

[
ϕ
(2)
i

∣∣∣W (1)
ti

]]
(ti+1 − ti) (25)

= ρ
n−1∑
i=0

E
[
ϕ
(1)
i E

[
ϕ
(2)
i

∣∣∣f (
W

(1)
ti

)]]
(ti+1 − ti) (26)

= ρ
n−1∑
i=0

E
[
ϕ
(1)
i E

[
ϕ
(2)
i

∣∣∣ϕ(1)
i

]]
(ti+1 − ti) (27)

= ρ
n−1∑
i=0

E
[
ϕ
(1)
i ϕ

(2)
i

]
(ti+1 − ti) (28)

where we have used the Markov property of
{
Y

(2)
t , t ≥ 0

}
to go from (24) to (25) and the non-

anticipating nature of function f to go from (25) to (26).

The last sum in (28) converges in mean square to ρ
t∫
0

E
[
Y

(1)
s Y

(2)
s

]
ds, which completes the proof.

Remark : the computation of the sum S1 is shorter, but somewhat heuristic, if one notices that the

non-zero correlation between
{
W

(2)
t , t ≥ 0

}
and

{
W

(1)
t , t ≥ 0

}
implies that F (1)

ti
⊂ F (2)

ti
, so that

the ϕ
(1)
i

′s are not only F (1)
ti

−measurable but also F (2)
ti

−measurable; thus, by conditioning w.r.t.

F (2)
ti

instead of F (1)
ti

, we obtain :

S1 =
n−1∑
i=0

E
[
E
[
ϕ
(1)
i ϕ

(2)
i

(
W

(1)
ti+1

−W
(1)
ti

)(
W

(2)
ti+1

−W
(2)
ti

) ∣∣∣F (2)
ti

]]
(29)

=

n−1∑
i=0

E
[
ϕ
(1)
i ϕ

(2)
i E

[(
W

(1)
ti+1

−W
(1)
ti

)(
ρW

(1)
ti+1

+
√

1− ρ2W̄
(2)
ti+1

− ρW
(1)
ti

−
√

1− ρ2W̄
(2)
ti

)]]

= ρ
n−1∑
i=0

E
[
ϕ
(1)
i ϕ

(2)
i

]
(ti+1 − ti)

(30)
(31)

6
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3 Application to Mathematical Finance

We now turn to an application of the general result of Section 2 to the modeling of the yield curve
and the valuation of fixed income instruments in mathematical finance.

Let the short-term interest rate be driven by the following three-factor, time-dependent, mean-
reverting stochastic differential equation:

drt = a (b (t)− rt) dt+ σR1dW
(1)
t + σR2dW

(2)
t + σR3dW

(3)
t

(32)

where (a, σR1, σR2, σR3) ∈ R4
+ and b (t) is a deterministic function of t satisfying a linear growth

condition so that there exists a solution to eq. (32) [8]. The processes
{
W

(1)
t , t ≥ 0

}
{
W

(2)
t , t ≥ 0

}
and

{
W

(3)
t , t ≥ 0

}
are three standard Brownian motions with d

[
W (1),W (2)

]
(t) =

ρ1.2dt, d
[
W (1),W (3)

]
(t) = ρ1.3dt and d

[
W (2),W (3)

]
(t) = ρ2.3dt.

This is an extended Vasicek model [9], belonging to the class of exponential affine models, which
are extensively used in the financial markets [10]. Compared to the original Vasicek model, two
Brownian motion have been added. This is because statistical studies of the yield curve have
consistently pointed out the need to introduce several random factors in order to reproduce the
observed variability of market rates. More specifically, empirical studies have shown that three
correlated Brownian motions are enough to capture over 95% of the actual yield curve [11]. In this
respect, σR1, σR2 and σR3 are the sensitivities of the interest rate to the first, the second and the
third random factors, respectively, affecting the yield curve. Only a three-factor model of the rate
process such as the one given by eq. (32) is capable of reproducing the observed changes in the shape
of the yield curve such as the way it alternately steepens and flattens over time, its inversion on
certain maturities or its various humps and peaks. This is an improvement over existing two-factor
models such as the G2++ model of Brigo and Mercurio [11], or the Hull-White model [12], which
generate curves that are too smooth and regular. The mean-reversion feature in eq. (32) is also
validated by empirical data. It has been made time-dependent, so that calibration to the current
market prices can be achieved by fitting an appropriate function b (t).

To compute discounted asset prices, whether they are fixed-income or equity, it is necessary to

compute the integral
T∫
0

rtdt, i.e. the integrated interest rate process. By taking the stochastic

differential of exp (at) rt and integrating it on [0, t], eq. (32) is found to admit the following solution:

rt = r0e
−at+a

t∫
0

e−a(t−s)b (s) ds+ σR1

t∫
0

e−a(t−s)dW (1)
s +σR2

t∫
0

e−a(t−s)dW (2)
s +σR3

t∫
0

e−a(t−s)dW (3)
s

(33)

At any given time t ≥ 0, the interest rate process is the sum of a constant, a Cauchy-Riemann
integral and several Ito integrals with non-random integrands. Hence, it is normally distributed,

and so is the integral
T∫
0

rtdt too. Notice, though, that the strong statement of the property of

stability of the Laplace-Gauss distribution with respect to addition is required, as the random
variables that are added together in eq. (33) are not independent from one another. Applying
a generalized, stochastic Fubini’s theorem [13], as well as the zero expectation property of Ito
integrals, one easily gets the moment of order 1 :

7
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E

[
T∫
0

rtdt

]
∆
= µ̄r = r0

a

(
1− e−aT

)
+ a

T∫
0

(
t∫
0

e−a(t−u)b (u) du

)
dt (34)

Since var

[
T∫
0

rtdt

]
=

T∫
0

t∫
0

cov [rt, rs] dsdt, our main result in Section 1 is instrumental in deriving the

moment of order 2 of the integrated rate process. Applying eq. (7) yields :

cov [rt, rs] = e−a(s+t)
(

e2as−1
2a

) (
σ2
R1 + σ2

R2 + σ2
R3 + 2ρ1.2σR1σR2 + 2ρ1.3σR1σR3 + 2ρ2.3σR2σR3

)
(35)

so that the variance of the time integral of {r (t) , t ≥ 0} is equal to :

(36)

It can be shown that the Brownian motion W (3) admits the following orthogonal decomposition
[14] :

W
(3)
t = ρ1.3W

(1)
t + ρ2.3|1 W̄

(2)
t + σ3|1.2 W̄

(3)
t (37)

where W (1) , W̄ (2) and W̄ (3) are pairwise independent, standard Brownian motions, and where the
following definitions hold:

σ2|1 =
√

1− ρ21.2 (38)

ρ2.3|1 =
ρ2.3 − ρ1.2ρ1.3

σ2|1

σ3|1.2 =
√

1− ρ21.3 − ρ22.3|1

(39)

Thus, for fixed T ≥ 0, the following equality in law can be established :

T∫
0

rt dt= µ̄r + σ̄r

(
(σR1 + σR2ρ1.2 + σR3ρ1.3)W

(1)
T +

(
σR2σ2|1 + σR3ρ2.3|1

)
W̄

(2)
T + σR3σ3|1.2 W̄

(3)
T

)
(40)

where

σ̄r = 1

a
√
T

√
T − 2

a
(1− e−aT ) + 1

2a
(1− e−2aT ) (41)

It is well-known in mathematical finance that zero-coupon bonds are the building blocks for the
construction of the yield curve. Let us denote by B (t, T ) the value, at a given time time t ≥ 0,

of a zero-coupon bond maturing at time T ≥ t. By definition, B (t, T ) = E

[
exp

(
−

T∫
t

rsds

)]
.

Thus, the exact value of B (t, T ) is readily obtained through the formula for the moment generating
function of a normally distributed random variable :

B (t, T ) = E

[
exp

(
−

T∫
t

rsds

)]
= exp (−A (t, T ) rt + C (t, T )) , 0 ≤ t ≤ T (42)

A (t, T ) = 1
a

(
1− e−a(T−t)

)
(43)

C (t, T ) = −a
T∫
t

(
u∫
t

e−a(u−s)b (s) ds

)
du (44)

8
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Last but not least, one can also obtain in closed form the probability distribution of an equity asset
whose instantaneous variations are driven by the following four-dimensional geometric Brownian
motion:

dSt = rtStdt+ σSStdW
(4)
t

(45)

In eq. (45), σS is a positive real constant and W (4) is a standard Brownian motion having non-zero
correlation with the Brownian motions W (1), W (2) and W (3), thus allowing to model covariation
between fixed-income and equity asset classes. If we denote by ρi.j the correlation coefficient between
W (i) and W (j), (i, j) ∈ {1, 2, 3, 4}, the Brownian motion W (4) admits the following orthogonal
decomposition [14]:

W
(4)
t = ρ1.4W

(1)
t + ρ2.4|1 W̄

(2)
t + ρ3.4|1.2 W̄

(3)
t + σ4|1.2.3 W̄

(4)
t (46)

where the four Brownian motions W (1), W̄ (2), W̄ (3) and W̄ (4) are independent from one another,
and where the following definitions apply:

ρ2.4|1 = ρ2.4−ρ1.2ρ1.4
σ2|1 (47)

ρ3.4|1.2 =
ρ3.4−ρ1.3ρ1.4−ρ2.3|1 ρ2.4|1

σ3|1.2
(48)

σ4|1.2.3 =
√

1− ρ21.4 − ρ22.4|1 − ρ23.4|1.2 (49)

Then, by applying Ito’s lemma to ln (St/S0), by using the representation of
T∫
0

rtdt provided by

eq. (40) and the decomposition of W (4) provided by eq. (46), one can obtain the following strong
solution to eq. (45):

St = S0 exp


(
µ̄r − σ2

S
2

)
t+W

(1)
t (σ̄r (σR1 + σR2ρ1.2 + σR3ρ1.3) + σSρ1.4)

+W̄
(2)
T

(
σ̄r

(
σR2σ2|1 + σR3ρ2.3|1

)
+ σSρ2.4|1

)
+W̄

(3)
T

(
σ̄rσR3σ3|2.1 + σSρ3.4|1 .2

)
+ W̄

(4)
T σSσ4|1.2.3

 (50)

Since eq. (45) describes the variations of an equity asset price process under the risk-neutral
measure, eq. (50) allows to derive closed form formulae for equity option prices in a general setting
where equity and fixed-income assets are correlated and the yield curve is driven by three factors.
As a consequence of the theory of non-arbitrage valuation of contingent claims ([15], [16]), the
prices, at the current time denoted by t0, of European call or put options written on S with expiry
T , can be expressed as linear combinations of expectations of two kinds:

EQ

[
exp

(
−

T∫
0

rtdt

)
f (ST ) I {Z}

]
(51)

EQ

[
exp

(
−

T∫
0

rtdt

)
I {Z}

]
(52)

In (51) and (52), I{Z}denotes the indicator function, Z represents an event involving ST that has to
occur for the option to have strictly positive value at expiry T , while f is a specific function implied
by the payoff under consideration, and Q is the equivalent martingale measure under which the
variations of S are driven by eq. (45). To compute expectations of the first kind, such as given by

9
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(51), one needs to switch from the original risk-neutral measure Q to the measure usually known as

forward-neutral, under which the process B(4) defined by B
(4)
t = W

(4)
t +σSt is a standard Brownian

motion. This change of measure is no different than the one required when the interest rate is
assumed to be constant in the standard Black-Scholes model. The computation of expectations of
the second kind such as given by (51), however, requires a new change of measure. Applying Ito’s
lemma to under Q, and then integrating on [0,t], one can obtain:

B (t, T ) = B (0, T )βt L (t, T ) (53)

where :

is the money market account, defined by
and :

L (t, T ) =

exp


− 1

2

t∫
0

(
A2 (s, T )

(
σ2
R1 + σ2

R2 + σ2
R3 + 2ρ1.2σR1σR2 + 2ρ1.3σR1σR3 + 2ρ2.3σR2σR3

))
ds

− (σR1 + σR2ρ1.2 + σR3ρ1.3)
t∫
0

A (s, T ) dW
(1)
s −

(
σR2σ2|1 + σR3ρ2.3|1

) t∫
0

A (s, T ) dW̄
(2)
s

−σR3σ3|1.2

t∫
0

A (s, T ) dW̄
(3)
s


(54)

Hence we have :

EQ

[
exp

(
−

T∫
0

rtdt

)
I {Z}

]
= EQ

[
B(t,T )

βt
I {Z}

]
= B (0, T )EPBT

[I {Z}] (55)

where is the equivalent martingale measure under which the numeraire is the zero-coupon bond,
whose Radon-Nikodym derivative is given by:

dPBT
dQ

|Ft = L (t, T ) (56)

The following processes :

(57)

B̄
(2)
t = W̄

(2)
t +

(
σR2σ2|1 + σR3ρ2.3|1

) t∫
0

A (s, t) ds =

W̄
(2)
t +

(σR2σ2|1 +σR3ρ2.3|1 )(1−e−aT−T)
a2

(58)

B̄
(3)
t = W̄

(3)
t + σR3σ3|1.2

t∫
0

A (s, t) ds = W̄
(3)
t +

σR3σ3|1.2 (1−e−aT−T)
a2 (59)

are standard Brownian motions under the measure

The analytical tractability of the three-factor model of the rate process given by eq. (32), leading
to closed form solutions for bond and option prices, is an attractive feature for practitioners for
two reasons. First, it enables them to avoid having to resort to Monte Carlo simulation, which is
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a relatively slow and inaccurate method. This is an advantage over the so-called “market models”
which do not preserve analytical tractability [11]. Furthermore, it allows easy and fast calibration
procedures. In particular, since a swaption can be decomposed into a portfolio of options on zero
coupon bonds, a calibration to swaption market prices is made possible. Details about how this
can be carried out are given in [17].

4 Conclusions

This article has shown that the covariance between Ito integrals in a multidimensional Brownian
motion model with cross-correlation can be dealt with by referring exclusively to the natural
filtrations of one-dimensional Brownian motions, albeit at the expense of some restriction of the
class of permissible integrands. Although the applications described in this paper only involve
deterministic integrands of the Ito integrals, it must be noticed that the general result given in
Section 2 extends to random integrands.
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