
 
Asian Research Journal of Mathematics 
 
10(1): 1-20, 2018; Article no.ARJOM.42092 
 

ISSN: 2456-477X 
 

 

 

_____________________________________ 
*Corresponding author: E-mail: shermuhammad@cecos.edu.pk; 
  
 

Squeezing Nanofluid Flow between Two Parallel Plates under 
the Influence of MHD and Thermal Radiation 

 
Sher Muhammad1,2*, Syed Inayat Ali Shah1, Gohar Ali1, Mohammad Ishaq1,  

Syed Asif Hussain1,2 and Hidayat Ullah2 
 

1Department of Mathematics, Islamia College Peshawar, 25000, KP, Pakistan. 
2CECOS University of IT and Emerging Sciences, Peshawar, 25000, KP, Pakistan. 

 
Authors’ contributions  

 
This work was carried out in equal collaboration of all the authors. The final version of the manuscript has 

been read and approved by the authors.  
 

Article Information 
 

DOI: 10.9734/ARJOM/2018/42092 
Editor(s): 

(1) Nikolaos Dimitriou Bagis, Department of Informatics and Mathematics, Aristotelian University of Thessaloniki, Greece. 
Reviewers: 

(1) Mohamed A. Hassan, Ain Shams University, Egypt. 
(2) Animasaun Isaac Lare, Federal University of Technology, Nigeria. 

Complete Peer review History: http://www.sciencedomain.org/review-history/25139 
 
 
 

Received: 28th March 2018 
Accepted: 7th June 2018 

Published: 14th June 2018 
_______________________________________________________________________________ 
 

Abstract 
 

This article addresses the squeezing nanofluid flow between two parallel plates under the influence of 
magneto hydrodynamics (MHD) and thermal radiation. One of the plates is fixed and the other is kept 
stretched. In this study water is considered as a base fluid. Heat and mass transfer aspects are examined in 
the presence of thermophoresis and Brownian motion.  Appropriate variables lead to a strong nonlinear 
ordinary differential system. The acquired nonlinear system has been solved via the homotopy analysis 
method (HAM). The convergence of the method has been shown numerically. Also, we obtained Skin 
friction, local Nusselt number and Sherwood number discussed with reference to flow parameters. The 
variation of the Skin friction, Nusselt number, Sherwood number and their impacts on the velocity, 
concentration and temperature profiles are examined.The effects of non-dimensional parameters on 
velocity, temperature and concentration have been discussed with the help of graphs for both suction and 
injection cases .Moreover, for comprehension the physical presentation of the embedded parameters, such 
as unsteady squeezing parameter, Thermal radiation parameter, Peclet number, Thermophoresis 
parameter, Levis number, Prandtl number, Schmidt number and Brownian motion are plotted and 
discussed graphically. At the end, we make some concluding remarks in the light of this article. 
 

 

Keywords: Thermal radiation; nanofluid; MHD; parallel plates; squeezing flow and HAM. 
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1 Introduction 
 
Squeezing nanofluid flow between two parallel plates under the Influence of MHD and Thermal Radiation 
plays a very important role in the real world phenomena which attract the researcher due to its vast 
applications. Many scientists worked in this field, according to their levels and needs. Squeezing flow has 
several applications in different fields, particularly in chemical engineering and food industry. Some 
publications are available to explain and demonstrate the properties and behaviour of squeezing nanofluid 
for industrial applications like nuclear reactions, foods, electronics, biomechanics, transportations etc. There 
are several examples regarding squeezing flow, but especially the important ones are injected, compression 
and polymer preparation. This field got considerable attention due to useful applications in the Biophysical 
and Physical field. Verma [1] has been studied squeezing flow amongst parallel plates. The unsteady 
squeezing flow of a viscous fluid between parallel disks has many applications in hydro dynamical 
machines, transient loading of mechanical components, and the squeezed films in power transmission. The 
flow configuration also has relevance in bearings with liquid metal lubrication. Magneto hydrodynamic 
(MHD) fluid can be treated as a lubricant to prevent the unexpected variation of lubricant viscosity with 
temperature under certain extreme operating conditions. The seminal work on squeezing flow under 
lubrication approximation was reported by Stefan [2]. Singh et al. [3] has been highlighted mass relocation 
and the effect of thermophoresis and Brownian motion. Hayat et al. [4] has been explored magneto-
hydrodynamic (MHD) in squeezing flow in Jeffery nanofluid for the parallel disc. Dib et al. [5] has been 
investigated squeezing nanofluid flow analytically. The term nanofluid was envisioned to describe a fluid in 
which nanometer-sized particles were suspended in conventional heat transfer basic fluids. Nanotechnology 
aims to manipulate the structure of the matter at the molecular level with the goal for innovation in virtually 
every industry and public endeavor, including biological sciences, physical sciences, electronics cooling, 
transportation, the environment and national security. Nano-fluid is the composition of Nano-particles, 
which shows significant properties at a reticent concentration of Nano-particles. Nano-fluid is a term refers 
to liquid consisting sub microparticles.  It has abundant applications, but the important feature is the 
development of thermal conductivity observed by Masuda et al. [6]. His investigation reveals that Nano-
fluid has different thermal properties like thermal viscosity, thermal infeasibility, relocate of temperature, 
convection temperature and thermal conductivity as compared to oil and water base fluids [7-9]. Magneto 
hydrodynamics (MHD; also magneto-fluid dynamics or hydro magnetic) is the study of the magnetic 
properties of electrically conducting fluids. Examples of such magneto fluids include plasmas, liquid 
metals, salt water, and electrolytes. Muhammad et al. [10] investigated the rotating flow of magneto 
hydrodynamic carbon nanotubes over a stretching sheet with the impact of non-linear thermal radiation and 
heat generation/absorption. Hamad [11] has been investigated the Nano-fluid analytical solution for 
convection flow in the occurrence of a magnetic field. Thermal radiation, a process by which energy, in the 
form of electromagnetic radiation, is emitted by a heated surface in all directions and travels directly to its 
point of absorption at the speed of light; thermal radiation does not require an intervening medium to carry 
it. Khan et al. [12] studied the combined magneto hydrodynamic and electric field effect on an unsteady 
Maxwell nanofluid flow over a stretching surface under the influence of variable heat and thermal radiation. 
Sheikholeslami [13] has been investigated thermal radiation effect on MHD flow and relocate of temperature 
by two-phase mode. The flow of nano-fluid among parallel plates is one of the benchmark problems which 
have important and crucial applications in MHD, the examples are power generators, pumps, purification of 
crude oil, petroleum industry, aerodynamic heating, different automobiles sprays and designing cooling 
systems with liquid metal. Goodman [14] was the first one to investigate viscous fluid in parallel plates. 
Borkakoti and Bharali [15] have been investigated Hydro magnetic viscous flow among parallel plates 
where one of the plates is a stretching sheet. Attia et al. [16] has been examined viscous flow between 
parallel plates with magnetohydrodynamics. Sheikholeslami et al. [17-19] has been studied the nanofluid 
flow of viscous fluids between parallel plates with rotating systems in three dimensions under the magneto 
hydrodynamics (MHD) effects. For the solution of the modelled problems they used numerical techniques 
and described the special effects of achieving parameters in detail. Mahmoodi and Kandelousi [20] have 
examined the hydro magnetic impact of Kerosene−alumina nanofluid flow in the occurrence of heat transfer 
analysis, differential transformation method is used in their work. Tauseef et al. [21] and Rokni et al. [22] 
have been scrutinized the MHD and temperature effects on nanofluids flow in parallel plates with the 
rotating system. Azimi and Riazi [23] have been studied temperature transfer analysis of CO-Water Nano-
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fluid flow between two parallel disks. Thermal radiation has an important role in flow phenomena. It has 
various applications because of its dependence on the temperature difference, as the polymer processing 
industries are using the radiation effects for the transformation of heat. The common ways of transfer of heat 
in the industry is not beneficial nowadays. The radiations play a significant role in heat transfer. Hayat et al. 
[24] has been discussed thermal radiations influence in squeezing flows of Jeffery fluids. Ali et al. [25] have 
been discussed the effect of radiations on un-steady free convection magnetohydrodynamics flows of the 
Brinkman kind fluids in a porous medium have Newtonian heat. Khan et al. [26] have been observed thermal 
radiation effect on squeezing flow Casson fluid among parallel disks. Makinde et al. [27] investigated 
thermophoresis and brownian motion effects on MHD bioconvection of nanofluid with nonlinear thermal 
radiation and quartic chemical reaction past an upper horizontal surface of a paraboloid of revolution. 
Avinash et al. [28] investigated aligned magnetic field effect on radiative bioconvection flow past a vertical 
plate with thermophoresis and brownian motion. Mahanthesh et al. [29] investigated Exploration of Non-
Linear Thermal Radiation and Suspended Nanoparticles Effects on Mixed Convection Boundary Layer Flow 
of Nano liquids on a Melting Vertical Surface. Pop et al. [30] studied Scrutinization of the effects of the 
Grashof number of the flow of different fluids driven by convection over various surfaces.  
 

In the present field of science and engineering, most of the mathematical problems are so involved that the 
accurate solution is almost complicated. So for the solution of such problems, Numerical and Analytical 
methods are used to find the approximate solution. One of the critical and famous techniques for solving 
such type problems is HAM (Homotopy Analysis Method). It is a substitute method, and its main advantage 
is applying to the nonlinear differential equations without discretisation and linearization. In (1992) Liao 
[31-36] was the first one to examine this technique for the solution of non-linear problem’s and showed that 
this technique is rapidly converging to the approximate solution. Also, this method gives us a series solution. 
The solution by this technique is perfect because it contains all the physical parameters of a problem and we 
can easily explain its performance in detail. Due to its rapid convergence, many researchers like Abbasbandy 
[37-38] and Rashidi [39-40] have used this technique to solve highly nonlinear and coupled equations. 
Hussain et al. [41] investigated Bioconvection model for squeezing flow between parallel plates containing 
gyrotactic microorganisms with impact of thermal radiation and heat generation/absorption by applying 
HAM.   
 

The basic theme of this paper is to discuss the unsteady squeezing flow of a nanofluid between two parallel 
plates under the Influence of MHD and Thermal Radiation. To our knowledge, no studies have been made to 
analyze the simultaneous effects of heat generation/absorption on heat and mass transfer of Squeezing 
nanofluid between two parallel channels. The governing coupled nonlinear partial differential equations are 
reduced to a system of coupled ordinary differential equations using appropriate transformations, and then 
the resulting equations are solved analytically by the homotopy analysis method (HAM). A parametric study 
is conducted to investigate the influence of various physical parameters on the velocity, temperature and 
concentration profile. Many similar results have been found and discussed graphically. Mathematica 
software is used for numerical simulation. 
 

2 Mathematical Formulation of the Problem 
 
The calculations and modelling used in this endeavor are explained as:  
 

The unsteady, two-dimensional and symmetric-nature flow of a viscous incompressible fluid between two 
parallel plates with the effects of MHD and thermal radiations is considered. The plates are placed in the 
Cartesian coordinates system in such a way that the lower plate is on the horizontal x-axis, and the y-axis is 
at the perpendicular position to the lower plate and the lower plate is fixed. It is assumed that the distance 
between these parallel plates is y = h, where h is a function of t. Furthermore, it is assumed that the lower 
plate is capable of moving away or towards the lower plate placed at y = 0. This plate (upper Plate) moves 

with   dh
v t

dt
  and the constant magnetic-field 0B  is acting in the y-direction. The temperatures at the 

upper and lower plates are 1  and 2 , respectively. It is also assumed that both plates (upper and lower) are 

maintained at constant temperature. The upper plate (placed at y = h (t)) has passive auxiliary conditions and 
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nanoparticles are distributed constantly at the lower plate (placed at y = 0).  Nanoparticles are diluted in the 
base fluid uninterruptedly and stably. The nanoparticles are scattered uniformly on the lower plate. The 
geometry of the nanofluid flow phenomena is shown in Fig. 1.  

 
Fig. 1. Geometry of the problem 

 
Observance in the above deliberation, the elementary equations are continuity, velocity, heat and 
concentration are articulated [41] as follow, 
 

0,ux yv                                                                                                                                        (1) 

 

    2
0 ( ),u p ut x y x xx yyuu vv v B u t                                                                             (2) 

 

    ,nf pt x y y xx yyv uv v v v                                                                                         (3) 

 

         
2 2

0

1 rdT
B x y

p f

C Ct x y xx yy x x y y
qD

u v D
yc

T T 


      


        
 

  
  

  

              

(4) 
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                                                                     (5) 

 

In equations (1-5) u  & v  denotes velocity components,   and C  represents the temperature at the plate &  

volumetric fraction of the nanoparticles ,
 
 

p

f

c

c





 , where ( ) pc

 
& ( ) fc

 
represents temperature 
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capacity of  nanoparticles and fluids. Moreover,   is the density of the nanofluid,   denotes viscosity, BD  

represents Brownian diffusion and TD  denotes thermophore tic coefficient, in x  and y  direction 

respectively. In Eq. (4), radq  is the radiative heat fluctuation is expressed in term of Roseland 

approximation as: 
 

 4*

*

4
,

3
rdq

y

  
 

 
                                                                                                                        (6) 

 

In Eq. (6) relation 
* *,k  indicate the “Stefan Boltzmann” constant & “mean absorption” coefficient 

respectively.  Supposing that the difference in heat inside the flow is such that 4  can be expressed as a 

linear combination of the heat, we enlarges 4  as Taylor’s series about 0   
as under: 

 

 4 4 3
0 0 04 ...,                                                                                                                    (7) 

 
After ignoring terms of higher order, we obtained: 
 

4 4 3
0 03 4 ,                                                                                                                                 (8) 

 
By Putting Eq. (7) in Eq. (6) we get 
 

3 * 2
0

* 2

16
,

3
rdq

y K y

   
 

 
                                                                                                                    (9) 

 
For lower and upper plates feasible auxiliary conditions [42] are: 
 

0 1  0,  0,   , & T ,u C C     
                                                                                                (10) 

 

2
0
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                                                              (11) 

 

For the flow model the non-dimensional similarity variables [42] are: 
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            (12) 

 

In above expression   0 0 and C  are reference temperature, reference concentration of nanoparticles and 

reference concentration of microorganism respectively.  Moreover substituting Eq. (12) into the governing 
equations. (1) to (5), clearly Eq. 1 hold identically and we develop the subsequent succeeding transformed 
ODE’s that are given bellow: 
 

- - -3 - 0,ivf ff f f f f f                                                                                         (13) 
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In the above model equations (13) to (15) different parameters are used like   represent unsteady squeezing 

parameter, thermal radiation ( Rd ), Brownian motion  Nb , Peclet ( Pe ), thermophoresis parameter ( Nt ), 

Levis number  Le , Prandtl number ( Pr ) and Schmidt number  Sc .
 
Also ,     and   all are constants. 

All these physical quantities are equal to the following expression’s which are expressed as: 
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                       (16)     

 

In above mentioned equation cb is the chemotaxis constant, cW  is the maximum cell swimming speed and 

nD is the microorganism diffusion coefficient. Furthermore, transmuted form of the feasible boundary 

conditions, both for lower as well as for upper plates defined in equations (10) to (11) are as:   
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The “Skin-Friction”, “Nusselt-Number” and “Sherwood-Number” are defined under as: 
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In above expression    and w wC   are surface temperature and surface concentration respectively.                                     

         
By using Eq. (12) dimensionless form, Nusselt Number, Skin-Friction and Sherwood are as: 
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Where  Rex

xU

v
  is represents a local Reynolds number. 

 

3 Methodology 
 
To solve equations. (13) - (15) with boundary conditions (17), we apply “Homotopy Analysis Method 
(HAM) [31-36]”. For the solution HAM scheme has benefits such as it is free from the large or small 
parameters. This technique gives a simple way to confirm the convergence of the solution. Moreover, it 
delivers freedom for the right selection of auxiliary parameter & base function. In this scheme, the assisting 
parameters h  are used to control the convergence of the problem. The initial guesses and linear operators 

for the dimensionless momentum, energy and concentration equations are ( of , 0 , o ) and  ( fL , L , L ) 

These are presented in the forms: 
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Selected linear operators, are: 
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The above-mentioned differential operator’s contents are shown below: 
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The resultant non-linear operators are given by: ,  ,  and fN N N   
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3.1 Zeroth-order deformation problem 
 
Expressing [0,1]ψ  be the embedding parameter with associated parameters ,  & f where 0 . 

Then the problem in case of zero order is formed as bellow: 
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   0(1 ) ( , ) ( ) ( ; ), ( ; ), ( ; ) ,h f              ψ ψ ψ ψ ψ ψL                                                  (27) 

 

   0(1 ) ( , ) ( ) ( ; ), ( ; ), ( ; ) ,h f              ψ ψ ψ ψ ψ ψL
                                            (28) 

 
The subjected boundary conditions are derived as: 
 

10
10

0 1 0
0

1

( ; ) ( ; )
 ( ; ) 0,  0,  ( ; ) ,  0,

( ; )
  ( ; ) 1,  ( ; ) ,  ( ; ) 0,

 ( ; ) ,  .

 
f f

f f w

b t



 
   






  




   
     

 


        



  

ψ ψ
ψ ψ

ψ
ψ ψ ψ

ψ
                                (29) 

 

Where [0,1]ψ  is the imbedding constraint, ,f   and   were used to regulate convergence of the 

solution. Where 0 & 1 ψ ψ we have: 

 
( ;1) ( ),  ( ;1) ( ),  ( ;1) ( ).f f              

 
Expanding the above term of ψwith the use of Taylor’s series expansion we obtain: 
 

1 1

1

( , ) ( ) ( ), ( , ) ( ) ( ),

( , ) ( ) ( ).

i io i o i

io

f f f

i

  

  

 
 




          

    

ψ ψ

ψ

                                                                   

(30) 

 
Where 
 

i

1 ( ; ) 1 ( ; ) 1 ( ; )
( ) ,   ( )  , ( ) .

i! i! i!

f
f i i




     
      

  ψ=o ψ=o ψ=o

ψ ψ ψ

       

                    (31) 
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3.2 thI  order deformation problem 
 
Differentiating Zeroth Order equations thi  times we obtained the thi Order deformation equations with 

respect to ψ dividing by !i  and then inserting 0.ψ So
thi order deformation equations are: 

 

   
 

1 1

1

( ) ( ) ( ), ( ) ( ) ( ),

( ) ( ) ( ).

f
f i i i f i ii i i i

i i i i

f f h h

h


 


 

 

  

 



             

     

L L

L
            

                            

(32)

         

                                                                                                  

 
The resultant boundary conditions are: 
 

(0) = 0, (0) = 0, (1) = 0, (1) = 0,  (0) 0,  (1) 0,

(0) (0) 0, (1) 0.

i i i i ii

i i i

iif f f f

b t i

     

      

                                                 

(33) 

 
1 1
0 01 1 1 1 1 1( ) 3 ,f iv i i

k ki i i k k i k i i if f f f f f f Mfk   
                                                          (34) 

 

 1 1 1
0 0 01 1 1 1 1

4
( )  1 Pr ,

3
i i i
k k ki i i k k i i k k i k kRd f b t          
                         

 
 
 

   (35)

 
 

 1
01 1 1 1 ( )  ,  i

ki i i k k i i

t
Le f

b

     
    


       



 
 
 

                                                           (36) 

                                                                 

Where 
 

1,   if 1

0,   if 1 i









ψ

ψ
                                                                                                                           (37) 

      

4 Convergence of HAM 
 
When the series solutions are computed for the velocity, temperature and concentration functions via using 

HAM, the assisting parameters are ,   and f     . These main parameters are responsible for the 

convergence of the solution. The Table 1 shows the convergence of the problem. It is clear from the Table 1 
that homotopy analysis technique is a quickly convergent technique. 
 
Table 1. Displays Convergence of the HAM up to 15th Order Approximation where, 0.5,M Nt     

0.8, Pr 0.7, 0.1, 1, 0.6, 0.  and 0.71 .Sc Rd Nb Le Pe        
 

Approximation Order. (0)f   (0)   (0)  

1 3.98886 -0.0207921 0.953750 
3 3.97650 -0.0387064 0.913169 
5 3.97584 -0.0396453 0.910490 
7 3.97583 -0.0396677 0.910383 
9 3.97583 -0.0396682 0.910379 
13 3.97583 -0.0396682 0.910379 
15 3.97583 -0.0396682 0.910379 
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5 Numerical Results and Discussion  
 
The current research has been carried out to study the Squeezing Nanofluid Flow between Two Parallel 
Plates under the Influence of MHD and Thermal Radiation. The determination of this subsection is to 

examine the physical outcomes of dissimilar embedding on the Velocity ( )f  , Heat     and 

Concentration      distribution which are illustrated in Figs. (2-14). Fig. 1 shows the geometry of the fluid 

model. The following results with complete details are achieved: Fig. 1 shows the geometry of the fluid 
model for comprehensions of the readers. Figs. 2, 3 and 4 represents the influences of squeezing fluid 
parameter   on     and( ),   f       When plates are moving apart, then   takes the positive value in 

that corresponding case & when plates are coming closer the values are considered negative. Fig. 2 shows 
the influence of the flow when plates are moving away & this is the opposite case of when plates are coming 
nearer. With the increase of   values fluid velocity also increasing.  Clearly velocity increases in the 
channel when fluid sucked inside. On the other hand, when fluid injected out, then the plates come closer to 
one another. This manner brings about a drop in the fluid and consequently decreases the velocity. With the 

varying value of   parameter the influence of  f   shown in Fig. 2. Figs. 3 and 4 show the influence of 

  parameter on the heat and concentration distributions respectively. Due to squeezing of the fluid the 
velocity increases and subsequently falls the temperature of the fluid because warm nanoparticles are 
escaping rapidly, which results in lower temperature and the concentration of the fluid automatically 
reduces. Fig. 5 demonstrates the impact of velocity field for various values of magnetic field parameter . It 
depicts that an increase in the value of M , velocity profile decreases, because Lorentz forces work against 
the flow and those regions where its influences dominates, it reduces velocity. After a certain distance, it 
increases. Fig. 6 demonstrates the characteristics of magnetic parameter   on heat distribution, which is 
increasing for higher values and drops for the small values of . Actually the Lorentz force, decreasing, 
which depend on the magnetic field  , so decreasing    leads to decrease the Lorentz force and 

consequently decreases ( ).   The impact of Pr  on the     and ( )   are presented in Figs. 7 and 8. 

Clearly, it is seen that temperature and concentration distributions vary inversely with Pr, that is temperature 
distribution drop with large numbers of Pr and rise for lesser values of Pr . Physically, the fluids having a 
small number of Pr  has larger thermal diffusivity and this effect is opposite for higher Prandtl number. Due 
to this fact large Pr  cause the thermal boundary layer to decreases. The effect is even more diverse for the 
small number of Pr since the thermal boundary layer thickness is relatively large. On the other hand, 
increasing behaviour of concentration distribution is shown in Fig. 8 for increasing Pr values. Fig. 9 

represents the influence of thermophoretic parameter Nt  on heat profile    . It is investigated that     

is increased by varying thermophoretic parameter Nt . According to Kinetic Molecular theory increasing the 
number of particles & increasing number of active particles both can cause to increase in the heat factor. Fig. 
10 represents the change in the concentration profile ( )   due to change in the parameter Nt . The profile

( )   decreases in suction and injection cases. In injection case, the decrement in ( )   is slow as compare 

to fluid suction case. Figs. 11 & 12 shows the effect of Nb  on    and ( )    fields. Heat profile     is 

increased by varying values of Nb  as shown in Fig. 11. Due to Kinetic molecular theory, the heat of the 
fluid increases due to the increase of Brownian motion. So the given result is in good agreement with the 
real situation. Similarly, Fig. 12 highlights the impact of the varying Nb parameter with respect to the 
concentration profile ( )   on the domain, 0 1.    An increasing impact of ( )  observed for both 

suction and injection in Fig. 12. A fast increment observed in ( )   for fluid suction as compared to fluid 

injection. Fig. 13 displays the influence of Le  on the concentration profile ( )   where it is decreased when 

the number Le  increases. Actually, it is the ratio of thermal diffusivity to the mass diffusivity. So, when the 
thermal diffusivity decreases it automatically decreases Le  and also decreases concentration field. Fig. 14 

displays the impact of radiation parameter Rd  on the heat field    . It is clearly observed that heat profile 
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  
 
decreases with increasing values of Rd . It is a common observation that radiating a fluid or some 

other thing can cause to reduce the temperature of that particular.  
 
5.1 Discussion about tables 
 
This segment of the article is about table discussions. Table 1 displays numerical values of HAM solutions at 
different approximation using various values of different parameters. It is clear from the Table 1 that 
homotopy analysis technique is a quickly convergent technique. Physical quantities, such as skin-friction 
coefficient, heat flux and mass flux for engineering interest are calculated through Tables (2-4). Table 2 

displays the impact of inserting parameters  and M   on Skin friction .fC  It is seen that growing value of 

,M   increases the skin friction. Table 3 examines the influences of embedding parameters ,Nb Nt  and Pr  

on heat flux .u  It is seen that increasing values of ,Nb Nt  reduce the heat flux ,u  where Pr  increase 

the heat flux when it increased. Table 4 inspects the influences of  and Nb Nt  on mass flux .Sh
 
The 

increasing value of b  increase the mass flux where t
 
decreases the mass flux. The higher value of R d  

reducing the mass flux. Moreover, Temperature decreases with the temperature jump parameter and 

increases with the thermal radiation parameter inside thermal boundary‐layer. 
 

 
 

Fig. 2. Effect of   on  f   when 0.9  and  0.9M  . 

 

 
 

Fig. 3. Effect of   on     when 

0.9, 0.4, 0.3, 0.1, Pr 0.6, 0.4.Le Nb Nt Rd        
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Fig. 4. Effect of   on     when 0.9, 0.4, 0.3, 0.1, Pr 0.6, 0.4.Le Nb Nt Rd        
 

 
 

Fig. 5. Effect of M  on  f   when 0.1 and 0.9    
 

 
 

Fig. 6. Effect of M  on     when 0.9, 0.3, Pr 0.5, 0.6, 0.1 and 1Le Nt Nb Rd         
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Fig. 7. Effect of Pr  on     when 0.9, 0.3, 0.1, 0.6, 0.4Le Nb Nt Rd      
 

 

 
 

Fig. 8. Effect of Pr  on     when 0.9, 0.3, 0.1, 0.6, 0.4, Pr 0.2Le Nb Nt        
 

 
 

Fig. 9. Effect of Nt  on     when 0.9, 0.3, 2, 0.4, Pr 0.6Le Nb Rd        
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Fig. 10. Effect of Nt  on     when 0.8, 0.3, 0.1, 0.4, Pr 0.6Le Nb     
 

 

 
 

Fig. 11. Effect of Nb  on     when 0.8, 0.3, 0.1, 0.4, Pr 0.6Le Nt Rd        
 

 
 

Fig. 12. Effect of Nb  on     when 0.8, 0.3, 0.1, 0.4, Pr 0.6Le Nt     
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Fig. 13. Effect of Le  on     when 0.9, 0.4, 0.1, 0.3, 0.4, Pr 0.6Le Nt Nb      
 

 

 
 

Fig. 14. Effect of Le  on     when 1, Pr 0.6, 0.1, 4Le Nt Nb      
 

 
Table 2. Displays the numerical values of the Skin Friction Co-efficient for various parameters where 

 0.6, 1,  0.8 &  0.7Nt Le Nb Sc Pe     . 
 

M      Hayat et al. [43] 
 

1

2Ref xC
  

Present results 
0.1 1.5   2.279427 0.9957 
0.5    2.287085 0.9999 
1.0    2.309896 1.1051 
1.5 1.5   2.175138 0.9957 
 2.0 2.280654 1.2057 
 2.5   2.385315 1.4947 

 



 
 
 

Muhammad et al.; ARJOM, 10(1): 1-20, 2018; Article no.ARJOM.42092 
 
 
 

16 
 
 

Table 3. Displays the Numerical values of Local Nusselt number for unlike type parameters, where 
Pr 0.7,  0.5,  0.6,  0.8,  0.7,  0.1,  and 0.5.Le Sr Sc Pe M       

 

Nb  Nt  Pr   Alsaedi et al. [44]  0 
  

Present result 
0.5    0.8755 1.9501 
1.0    0.8398 1.5546 
1.5    0.8064 1.2013 
2.0 0.5   0.8167 2.5923 
 1.0   0.6971 1.7456 
 1.5   0.5735 1.1196 
 2.0 1.0  0.7472 1.0072 
  1.5  0.8943 2.4609 
  2.0  1.0270 2.1796 

 

Table 4. Displays numerical type values of the Local-Sherwood number for different parameters 
Where, Sc=0.8, Le=0.6, Pr=Pe=0.7 and M=λ=0.5 .  

 

Nb  Nt   Alsaedi 
et al. [44] 

  0  

Present results
 

0.2   0.5878  0.6624 
0.6   0.9582  0.7910 
1.0   1.0320  0.8518 
0.2 0.5  0.5878  0.9901 
 1.0  0.0858  0.9020 
 1.5  -0.3914  0.8615 

 

6 Concluding Remarks 
 
In order to facilitate the readers the following conclusions are derived:  
 

The observation of this investigation is regarding the effects of thermal radiations and 
magnetohydrodynamic (MHD) influences on squeezing nanofluid flowbetweentwo parallel plates. The key 
points are: 
 

 When we increase thermal radiation parameter Rd , then it augments temperature of the boundary 
layer area in fluid layer. This increase leads to drop in the rate of cooling for nanofluid flow.  

 Effects of squeezing parameter on temperature and concentration profiles are quite opposite to each 
other. 

 It is observed that     is increased by varying thermophoretic parameter Nt . 

 The larger values of Nb raises the kinetic energy of the nanoparticles, which result an increase in the 
heat profile. 

 Effects of Brownian motion parameter on temperature and concentration profiles are quite the 
opposite from each other. 

 The convergence of the homotopy method along with the variation of different physical parameters 
has been observed numerically. 

 It is seen that increasing  and M   increase the skin friction .fC  

 It is seen that growing values of and Nb Nt  reduce the heat flux u while large values of Pr  

increase the heat flux u . 

 The increasing values of b  increase the mass flux where t reduce the mass flux. 
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