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1 Introduction

We investigate the following problem

ẍ+ V ′(t, x) = 0, t ∈ [0, 1], t ̸= tj , j = 1, 2, · · · , p, (1.1)

∆x′(tj) = x′(tj + 0)− x′(tj − 0) = Jj(x
′(tj)), (1.2)

x(0) cosα− x′(0) sinα = M1(x(0), x
′(0), x(1), x′(1)), (1.3)

x(1) cosβ − x′(1) sinβ = M2(x(0), x
′(0), x(1), x′(1)), (1.4)

where V : [0, 1] × Rn → R, V ′denotes the gradient of V with respect to x, 0 = t0 < t1 < t2 <
· · · < tp < tp+1 = 1,∆x′(tj) = x′(tj + 0)− x′(tj − 0) = lim

t→t+j

x′(t)− lim
t→t−j

x′(t), Jj ∈ C(Rn,Rn)(j =

1, · · · , p), Mk ∈ C(R4n,Rn)(k = 1, 2) are bounded, α ∈ (0, π), β ∈ (0, π).

When n = 1, α = 0, β = π, Jj = 0,Mi = 0 for j = 1, · · · , p, i = 1, 2, the problem (1.1)-(1.4) reduces
to the following Duffing equation

ẍ+ f(t, x) = 0, (1.5)

x(0) = 0 = x(1), (1.6)

where f(t, x) = V ′(t, x). Under the condition

∂

∂x
f(t, x) ≤ −η < −π2

for all (t, x) ∈ I × R and some constant η > 0, [1] has proved that (1.5)-(1.6) has at least one
solution. For the second Hamiltonian system

ẍ+ V ′(t, x) = 0, (1.7)

x(0) cosα− x′(0) sinα = 0, (1.8)

x(1) cosβ − x′(1) sinβ = 0, (1.9)

where V ∈ C1([0, 1] ×Rn,R), α ∈ [0, π) and β ∈ (0, π], there exists the similar solvable condition
(V1) There exists B ∈ L∞([0, 1],Ls(R

n)) such that

V ′(t, x) · x ≤ B(t)x · x, ∀(t, x) ∈ [0, 1]×Rnwith|x| ≥ r.

In order to describe solvable conditions for (1.7)-(1.9) on B, we recall the index theory (see [2],[3])
for the linear systems (1.8)-(1.9) and

ẍ+B(t)x = 0. (1.10)

This index theory associates B with a pair of integers (iα,β(B), να,β(B)) ∈ N × {0, 1, · · · , n} as
follows:

να,β(B) = the dimension of the solution space of (1.8)− (1.10),

iα,β(B) =
∑
λ<0

να,β(B + λIn). (1.11)

In ([2],[3]) the author has proved that under condition (V1) with να,β(B) = iα,β(B) = 0 the
problem (1.7)-(1.9) has one solution. Note that when α = 0, β = π, (1.8)-(1.9) reduces to (1.6). As
η < π2, i0,π(ηIn) = 0 = ν0,π(ηIn). So that result generalizes Lees’ result.

In this paper we further generalize the above results to the impulsive Hamiltonian system (1.1)-(1.4).
To this end we also need the following assumptions:
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(V2) There exists B0 : [0, 1]×Rn → Ls(R
n) with B0(·, x(·)) ∈ L∞([0, 1],Ls(R

n)) for x(·) ∈ Y
(Y is defined in section 3) andB01, B02 ∈ L∞([0, 1],Ls(R

n)) with iα,β(B01) = iα,β(B02), να,β(B02) =
0 such that

B01(t) ≤ B0(t, x) ≤ B02(t), V
′(t, x) = B0(t, x)x as |x| → 0.

(M) Mk(ξ) = o(|ξ|) as |ξ| → 0, k = 1, 2.
(J)Jj(ξ) = o(|ξ|) as |ξ| → 0, j = 1, 2, · · · , p.

The main result of this paper is the following theorem.

Theorem 1.1 Assume V satisfies (V1) with να,β(B) = iα,β(B) = 0. Then (1.1)-(1.4) has one
solution. If further (V2), (M) and (J) hold, then (1.1)-(1.4) has a nontrivial solution provided
iα,β(B01) is odd.

The paper is organized as follows. In section 2, we give preliminary facts and provide some
definitions, properties and lemmas that are needed later. The proof of Theorem 1.1 will be
given in Section 3. Generally the problem (1.1)-(1.4) is not easy to investigate by variational
methods. We refer to [1],[4],[5],[6],[7],[8],[9],[10],[2],[11] for some results with topological methods
and other methods. For some special cases we have happily seen some results [12],[13],[14] with
variational methods. In order to prove Theorem 1.1 we also use topological homotopy contiuation
methods by showing for example that the possible solutions of (3.1)-(3.4) are a priori bounded in
C1([0, 1], {ti};Rn) (see the definition in Section 3). For the special case Mk = 0(k = 1.2), Jj =
0(j = 1, · · · , p), Poincaré’s inequality can be used as in [12]. However, for our case Poincaré’s
inequality can’t be used directly. We transform (3.1)-(3.4) into an equivalent integral equation
and then its solution is naturally divided into two parts x = x1 + x2 such that x2 is bounded in
C1([0, 1], {ti};Rn) and x1 ∈ H2([0, 1],Rn) and satisfies (1.8)-(1.9). By this additional condition
we can use Poincaré’s inequality to show that x1 is a priori bounded in H1([0, 1],Rn) and then in
C1([0, 1],Rn), concluding the proof.

2 Some Useful Results

In this section, we present some results that are useful to the proof of the main results. For the
convenience of the reader, we also present here the necessary definitions. We use | · | denotes the
usual norm in Rn and || · ||1 denotes the norm of C1([0, 1],Rn) , we denote by H1([0, 1],Rn) the
Sobolev space H1 = {x ∈ L2([0, 1];Rn) : ẋ ∈ L2([0, 1];Rn)} where ẋ is weak derivative of x with
the inner product

(x, y) =

∫ 1

0

x(t) · y(t)dt+
∫ 1

0

ẋ(t) · ẏ(t)dt,

where x · y denotes the inner product in Rn. The corresponding norm is defined by ||x||H1 =

(x, x)
1
2 , x ∈ H1.

Suppose X is a Banach space and Ω ⊂ X is a bounded open set. T : Ω → X is compact and
x− T (x) is not zero for all x ∈ ∂Ω, so the Laray-Schauder degree deg(Id− T ) ∈ Z is defined.

Proposition 2.1. (i)If deg(Id− T,Ω) is not zero, then there exists x ∈ Ω such that x− Tx = 0,
(ii)If K is linear compact, ker{Id−K} = {0} and 0 ∈ Ω, then deg(Id−K,Ω) ̸= 0.
(iii)deg(Id − Tλ,Ω) is constant for λ ∈ [0, 1] provided x − Tλ is not zero for any x ∈ ∂Ω and

Tλx = (1− λ)T0x+ λT1x and T0, T1 : Ω → X are compact.
(iv) Assume K : X → X is a linear compact operator, 1 /∈ σ(K) the spectral of K. Let Ω be

an open bounded subset of X with 0 ∈ Ω. Then deg(Id−K,Ω) = (−1)β where β =
∑

λj>1,λj∈σ(K)

βj

and βj = dim
∞∪

m=1

ker(K − λj)
m.
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We also need some facts about the index. We can find the following definitions and propositions in
(see [2][3]). For any B ∈ L∞([0, 1],Ls(R

n)), consider the following system

ẍ(t) +B(t)x(t) = 0, (2.1)

x(0) cosα− x′(0) sinα = 0, (2.2)

x(1) cosβ − x′(1) sinβ = 0. (2.3)

Definition 2.1 For any B ∈ L∞([0, 1],Ls(R
n)), we define

να,β(B) = the dimension of the solution space of (2.1)− (2.3),

iα,β(B) =
∑
λ<0

να,β(B + λIn).

Definition 2.2 For any B1, B2 ∈ L∞([0, 1],Ls(R
n)) with B1 < B2, we define

I(B1, B2) =
∑

λ∈[0,1)

να,β(λB2 + (1− λ)B1).

We define the symmetric bilinear form

a(x, y) =

∫ 1

0

ẋ(t) · ẏ(t)dt− x(1) · y(1) cot(β) + x(0) · y(0) cot(α),∀x, y ∈ H1([0, 1],Rn).

Let µ ∈ R such that να,β(µIn) = 0, and let (Lx)(t) = −ẍ(t)−µx(t) for x ∈ H2
α,β([0, 1],R

n) = {x ∈
H2([0, 1],Rn) : x(0) cosα− x′(0) sinα = 0, x(1) cosβ − x′(1) sinβ = 0}, (Qx)(t) = (B(t)− µIn)x(t)
for x ∈ L2([0, 1],Rn) and Tµ,B = Id− L−1Q. Set Ur = {x ∈ C1([0, 1],Rn)|∥x∥ < r} for r > 0.

Proposition 2.2 (i) For any B1, B2 ∈ Ls(R
n), if B1 ≤ B2, then iα,β(B1) ≤ iα,β(B2), να,β(B1) +

iα,β(B1) ≤ να,β(B2) + iα,β(B2).
(ii)For any B1, B2 ∈ L∞([0, 1],Ls(R

n)) with B1 < B2, we have

I(B1, B2) = iα,β(B2)− iα,β(B1).

(iii) For any B ∈ L∞([0, 1],Ls(R
n)) with να,β(B)+iα,β(B) = 0, ϕa,B(x, x) ≡ a(x, x)−

∫ 1

0
B(t)x·

xdt ≥ 0, x ∈ H1([0, 1],Rn) and (ϕa,B(x, x))
1
2 is an equivalent norm on H1([0, 1],Rn).

(iv) There exists a constant c1 > 0 such that for any x ∈ H1([0, 1],Rn), |x(t)| ≤ c1||x||H1 for
all t ∈ [0, 1].

(v) For µ ∈ R and B ∈ L∞([0, 1],Ls(R
n)) with iα,β(µIn) = να,β(µIn) = 0 and B > (µ+ 1)In,

we have
deg(Tµ,B , Ur) = (−1)iα,β(B).

Proof. We only prove (v) because (i-iv) can be found in [[2],[3]]. Setting K = L−1Q yields∑
λ>1,λ∈σ(K)

dimker(K − λ) =
∑

λ>1,λ∈σ(K)

να,β(
1

λ
B + (1− 1

λ
)µIn)

=
∑

γ∈[0,1)

να,β(γB + (1− γ)µIn) = I(µIn, B) = iα,β(B)− iα,β(µIn) = iα,β(B).

By Proposition 2.1(iv) we need only to show that ker(K − λ)2 = ker(K − λ) for λ > 1. In fact,
assume (K−λ)2x = 0. Then x̄ ≡ (K−λ)x = (L−1 −λQ−1)Qx ∈ R(L−1 −λQ−1), 0 = (K−λ)x̄ =
(L−1 − λQ−1)Qx̄,Qx̄ ∈ ker(L−1 − λQ−1). Because L−1 − λQ−1 : L2([0, 1],Rn) → L2([0, 1],Rn)
is self-adjoint,

∫ 1

0
Qx̄ · x̄dt = 0. Hence x̄ = 0. Remark For the index theory of convex linear

Hamiltonian systems and symplectic paths
we refer to ([15] [8]).
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3 Proof of the Theorem 1.1

In this section we will prove Theorem 1.1.

Proof of Theorem 1.1 Consider the homotopy problem:

ẍ+ (1− λ)B(t)x(t) + λV ′(t, x) = 0, t ∈ [0, 1], t ̸= tj , j = 1, 2, · · · , p, (3.1)

∆x′(tj) = x′(tj + 0)− x′(tj − 0) = λJj(x
′(tj)), (3.2)

x(0) cosα− x′(0) sinα = λM1, (3.3)

x(1) cosβ − x′(1) sinβ = λM2. (3.4)

Mk is short for Mk(x(0), x
′(0), x(1), x′(1))(k = 1, 2), λ ∈ (0, 1). We first transform the problem

into an equivalent integral equation. Let µ > 0 be free and f(t) ≡ (1 − λ)(B(t)x(t) + µ2x(t)) +
λ(V ′(t, x) + µ2x(t))). Then (3.1) is equivalent to

ẍ(t)− µẋ(t) + µẋ(t)− µ2x(t) = −f(t)

Multiplying the integral factor eµt and integrating over [0, t], we can get

ẋ(t)− µx(t) = λe−µt
∑
tj<t

eµtjJj − e−µt

∫ t

0

eµsf(s)ds+ e−µt(ẋ(0)− µx(0)).

And multiplying the integral factor e−µt and integrating over [0, t] again, we obtain

e−µtx(t)− x(0) = λ

∫ t

0

e−2µs
∑
tj<s

eµtjJjds+

∫ t

0

e−2µsds(ẋ(0)−µx(0))−
∫ t

0

e−2µτ

∫ τ

0

eµsf(s)dsdτ,

and then

x(t) = chµtx(0) +
1

µ
shµtẋ(0) +

λ

µ

∑
tj<t

shµ(t− tj)Jj −
1

µ

∫ t

0

shµ(t− s)f(s)ds

ẋ(t) = µshµtx(0) + chµtẋ(0) + λ
∑
tj<t

chµ(t− tj)Jj −
∫ t

0

chµ(t− s)f(s)ds

Consider the boundary conditions:

x(1) = chµx(0) +
1

µ
shµẋ(0) +

λ

µ

p∑
j=1

shµ(1− tj)Jj −
1

µ

∫ 1

0

shµ(1− s)f(s)ds

ẋ(1) = µshµx(0) + chµẋ(0) + λ

p∑
j=1

chµ(1− tj)Jj −
∫ 1

0

chµ(1− s)f(s)ds

where as usual cha = 1
2
(ea + e−a) and sha = 1

2
(ea − e−a).

Hence
x(0) cosα− x′(0) sinα = λM1

(chµ cosβ − µshµ sinβ)x(0) + (
1

µ
shµ cosβ − chµ sinβ)x′(0) = λM2 − cosβξ1 + sinβξ2

where

ξ1 =
λ

µ

p∑
j=1

shµ(1− tj)Jj −
1

µ

∫ 1

0

shµ(1− s)f(s)ds,
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ξ2 = λ

p∑
j=1

chµ(1− tj)Jj −
∫ 1

0

chµ(1− s)f(s)ds.

Then (
x(0)
x′(0)

)
=

1

∆

(
In(

1
µ
shµ cosβ − chµ sinβ) In sinα

In(µshµ sinβ − chµ cosβ) In cosα

)(
λM1

λM2

)
+

1

∆

(
sinα
cosα

)
[sinβξ2 − cosβξ1]

where we choose µ > 0 large enough such that ∆ = 1
µ
shµ cosα cosβ+chµ sin(α−β)−µchµ sinα sinβ ̸=

0.
Hence

x(t) =

∫ 1

0

G(t, s)f(s)ds+ λ(Mx)(t) (3.5)

where

G(t, s) =
1

∆

(
Inchµt In

1
µ
shµt

)( sinαIn
cosαIn

)
[
1

µ
cosβshµ(1− s)− sinβchµ(1− s)]− 1

µ
shµ(t− s)In

for 0 ≤ s ≤ t ≤ 1;

G(t, s) =
1

∆

(
Inchµt In

1
µ
shµt

)( sinαIn
cosαIn

)
[
1

µ
cosβshµ(1− s)− sinβchµ(1− s)]

for 0 ≤ t ≤ s ≤ 1;

(Mx)(t) =
1

∆

(
Inchµt In

1
µ
shµt

)
{
(

In(
1
µ
shµ cosβ − chµ sinβ) In sinα

In(µshµ sinβ − chµ cosβ) In cosα

)(
M1

M2

)
+

(
In sinα
In cosβ

)
{sinβ

p∑
j=1

chµ(1− tj)Jj(x
′(tj))− cosβ

1

µ

p∑
j=1

shµ(1− tj)Jj(x
′(tj))}

+
1

µ

p∑
tj<t

shµ(t− tj)Jj(x
′(tj))}. (3.6)

Then x(t) is a solution of (3.1)-(3.4) if and only if x(t) is a solution of the integral equation (3.5). Let
Y = C1([0, 1], {ti};Rn) = {x : [0, 1] → Rn|x′(t) exists and continuous for t ̸= ti, x

′(ti±0) exists and
x(ti) = x(ti−0), x′(ti) = x′(ti−0) for i = 1, 2, · · · , p}with the norm ||x|| = supt∈[0,1]{|x′(t)|, |x(t)|}.
The operator M : Y → Y defined by (3.6) is compact.

Set (Tλx)(t) = f(t) = (1 − λ)(B(t)x(t) + µ2x(t)) + λ(V ′(t, x) + µ2x(t)) for x ∈ Y . (Fu)(t) =∫ 1

0
G(t, s)u(s)ds for u ∈ L2([0, 1],Rn) and (Ax)(t) = −ẍ(t) + µ2x(t) for x ∈ H2

α,β([0, 1],R
n). Then

Tλ : Y → L2([0, 1],Rn) are continuous and F = A−1 : L2([0, 1],Rn) → Y is compact. Hence
(3.1)-(3.4) can be viewed as the operator equation

x = A−1Tλx+ λMx = (1− λ)FT0x+ λ(FT1 +M)x. (3.7)

So in order to use topological degree to investigate (3.7) it suffices to show the possible solutions of
(3.1)-(3.4)are a priori bounded in Y . Let x(t) =

∫ 1

0
G(t, s)f(s)ds+λ(Mx)(t) = x1(t)+x2(t), where

x1(t) =
∫ 1

0
G(t, s)f(s)ds = FTλx ∈ H2

α,β([0, 1],R
n), x2(t) = λ(Mx)(t). x2 is bounded in Y because

of the boundedness of Jj(j = 1, 2, · · · , p) and Mk(k = 1, 2).

Next we show ||x1|| is also bounded, we only need to show ||x1||H1 is bounded.
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By (V1), there is a c2 > 0 such that∫ 1

0

V ′(t, x) · x(t)dt ≤
∫ 1

0

B(t)x(t) · x(t)dt+ c2,∀(t, x) ∈ [0, 1]×Rn.

And x(t) satisfies (3.1)-(3.4), we have

0 =

∫ 1

0

ẍ(t) · x(t)dt+
∫ 1

0

(1− λ)B(t)x(t) · x(t)dt+ λ

∫ 1

0

V ′(t, x) · x(t)dt

≤ x(1)ẋ(1)− x(0)ẋ(0)−
p∑

j=1

x(tj)Jj(x(tj))−
∫ 1

0

|ẋ(t)|2dt+
∫ 1

0

B(t)x(t) · x(t)dt+ λc2

≤ |x(1)|2 cotβ − |x(0)|2 cotα− λ

sinβ
x(1) ·M2 +

λ

sinα
x(0) ·M1 − λ

p∑
j=1

x(tj) · Jj(x
′(tj))

−
∫ 1

0

|ẋ(t)|2dt+
∫ 1

0

B(t)x(t) · x(t)dt+ λc2

≤ |x1(1)|2 cotβ − |x1(0)|2 cotα−
∫ 1

0

|ẋ1(t)|2dt+ c3|x1(1)|+ c3|x1(0)|+
∫ 1

0

B(t)x1 · x1dt

+c3

p∑
j=1

x1(tj)) + c4 = −ϕa,B(x1, x1) + c3(|x1(1)|+ x1(0) +

p∑
j=1

|x1(tj)|) + c4

where c3 and c4 are constants.

By Proposition 2.2(iii)(iv), there exists c5 > 0

||x1||2H1 ≤ c5(||x1||H1 + 1)

Hence ||x1||H1 is bounded, we obtain ||x|| is bounded.

The above argument shows that there is R > 0 such that ||x|| > R, ẍ+(1−λ)B(t)x(t)+λV ′(t, x) ̸= 0.
Set Nλ : Y → Y by (Nλx)(t) = (1− λ)(A−1T0x)(t) + λ((A−1T1 +M)x)(t); then deg(Id−Nλ, UR)
is well defined. ker(Id − N0) = ker(Id − A−1T0) = {0} because of να,β(B) = 0 and Proposition
2.1(ii)(iii) lead to deg(Id − N0, UR) ̸= 0 and deg(Id − N1, UR) = deg(Id − N0, UR) ̸= 0. Then
(1.1)-(1.4) has one solution via Proposition 2.1(i).

Now we further assume (V2), (M), (J) hold, we prove that the following problem:

x− (1− λ)(A−1T2x)− λ(A−1T1 +M)x = 0

has no solution x satisfying 0 < ||x||1 ≤ r0 where T2 : Y → Y by (T2x)(t) = B01(t)x(t) + µ2x(t)
and r0 > 0 is small enough and recall that T1 = V ′(t, x) + µ2x(t). If not, there exist {xk}∞k=1 ⊂ Y
such that ||xk|| → 0 and {λk}∞k=1 ⊂ (0, 1) such that

xk − (1− λk)(A
−1T2xk)− λk(A

−1T1 +M)xk = 0 (3.8)

Set B̄k(t) = (1− λk)(B01(t) + µ2In) + λk(B0(t, xk) + µ2In) and yk = xk
||xk|| , then (3.8) turns to

yk − (A−1B̄kyk)− λk
Mxk

||xk||
= 0 (3.9)

By (M) and (J), we know Mxk
||xk|| → 0 in Y . Since ||yk|| = 1, {B̄kyk} is bounded and weakly

convergent in L2([0, 1],Rn) and hence yk → y0 in Y via (3.9) by going to subsequences if necessary.
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SetB̃k(t) = (1− λk)B01(t) + λkB0(t, x); then B01(t) ≤ B̃k(t) ≤ B02(t) and we claim that there is a
D0 ∈ L∞([0, 1],Ls(R

n)) satisfying B01 ≤ D0 ≤ B02 such that

B̃kyk ⇀ D0y0, (3.10)

in L2([0, 1],Rn). In fact, setting B01 = (b
(01)
ij (t))n×n, B02 = (b

(02)
ij (t))n×n and B̃k(t) = (̃bkij(t))n×n,we

have
b
(01)
ii ≤ b̃kii ≤ b

(02)
ii ,∀i = 1, 2, · · · , n

2b
(01)
ij + b

(01)
ii + b

(01)
ij ≤ 2b̃kij + b̃kii + b̃kij ≤ 2b

(02)
ij + b

(02)
ii + b

(02)
ij , ∀j ̸= i.

We can get b̃kij ⇀ bij in L2([0, 1],R) by going to subsequences if necessary. Then setting D0(t) =

(bij(t))n×n leads to the results. Since A−1 : L2([0, 1],Rn) → Y is compact and B̄kyk = B̃kyk+µ2yk,
we can get A−1B̄kyk → A−1(D0y0 + µ2y0) in Y via (3.10).

Taking limit in (3.9) yields
y0 −A−1(D0y0 + µ2y0) = 0

and ||y0|| = 1. This means that y = y0 is a nontrivial solution of the following system

ÿ(t) +D0y(t) = 0,

y(0) cosα− y′(0) sinα = 0,

y(1) cosβ − y′(1) sinβ = 0.

Because iα,β(B01) = iα,β(B02), να,β(B02) = 0, by Proposition 2.1, να,β(D0) = 0, a contradiction.

Hence Proposition 2.3(iv) yields deg(Id−N1, UR\Ūr0) = deg(Id−N1, UR)− deg(Id−N1, Ūr0) =
(−1)iα,β(B) − (−1)iα,β(B01) = 1 − (−1)iα,β(B01) = 2 ̸= 0 because iα,β(B01) is odd. Therefore,
(3.1)-(3.4) has one solution x with ||x||1 ∈ (r0, R).

4 Conclusions

Thoughout this paper, we obtain some results on the nonlinear Sturm-Liouville boundary value
problems for second order Hamiltonian systems with impulsive effects. Compared the results
obtained in [1] and [2], we generalized some previous results.
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