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Abstract

The discrete spectrum for an unbounded operator J defined by a special infinite tridiagonal
complex matrix is approximated by the eigenvalues of its orthogonal truncations. Let σ(J) means
the spectrum of the operator J and

Λ(J) = {λ ∈ Limn→∞λn : λn is an eigenvalue of Jn},

where Limn→∞λn is the set of limit points of the sequence (λn), and the n × n matrix Jn is an
orthogonal truncation of J .
We consider classes of tridiagonal complex matrices for which σ(J) = Λ(J).
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1 Introduction

Examples of infinite non-symmetric tridiagonal matrices and complex Jacobi matrices were
investigated by several authors: [1], [2], [3], [4], [5], [6], Ikebe, Asai, Miyazaki and Cai [7], and
others (see, e.g., [8], [9], [10], [11], [12], [13], [14] and, [15]). However, systematic investigations,
concerning spectral properties of non-selfadjoint tridiagonal operators, are difficult because the
structure of complex sequences could be more complicated then the structure of real sequences.
Moreover, standard operator methods, which give effective results on real Jacobi matrices, fail in
the complex case. The relationships of tridiagonal matrices and the formal orthogonal polynomials
on the complex plane can be find, e.g., in [2], [3], [8]. Complex tridiagonal infinite matrices are
also useful in the theory of special functions like the Bessel functions or the Mathieu functions [7],
[15], and [16]. Non-symmetric tridiagonal matrices with real entries are essentially associated with
the Hill equation [4], the Ince equation [15], the Mathieu equation [16], and other second order
equations [7], [17].

We consider a complex tridiagonal infinite matrix

J ((dn), (an), (bn)) =


d1 a1 0 · · · · · ·

b1 d2 a2 0
. . .

0 b2 d3 a3

. . .

...
. . .

. . .
. . .

. . .

 , (1.1)

where dn, an, bn ∈ C \ {0}.

The matrix J ((dn), (an), (bn)) defines a linear operator J in the space l2 = l2(N) which acts on a
maximal domain

Dom(J) = {(fn)∞n=1 ∈ l2 : (bn−1fn−1 + dnfn + anfn+1)
∞
n=1 ∈ l2} (1.2)

and

(Jf)n = bn−1fn−1 + dnfn + anfn+1, n ≥ 1, (1.3)

for f = (fn)
∞
n=1 ∈ Dom(J) and b0 = 0. The domain Dom(J) of the operator J is dense in l2.

Assume that X is a complex Banach space. Denote by B(X) the space of all bounded linear
operators on X. Let A : Dom(A) → X be a densely defined linear operator in X. The resolvent set
of A is the set

ρ(A) = {λ ∈ C : (A− λI)−1 exists in B(X)}. (1.4)

The inverse operator (A− λI)−1, where λ ∈ ρ(A), is called the resolvent of A and

σ(A) = C \ ρ(A) (1.5)

means the spectrum. We are interested in the classes of unbounded tridiagonal operators, for which
the spectrum is discrete. The criteria, which guarantee compactness of the resolvent and a discrete
spectrum, for a non-symmetric or complex tridiagonal operator are given in [7], [10], [13] and [15].

Different kind of problems in infinite-dimensional spaces are approximated by some problems in
finite-dimensional spaces because of the fact that many mathematical software products provide
functionality for the solution of matrix equations. To realize this strategy correctly, the projective
and iterative methods can be used, see for example [18], [19], [20], [11] and [21], and the famed
monographs: [22], [23], [24], [25]. The question about approximation of the spectrum of an operator
by eigenvalues of properly selected matrices is also unsophisticated.
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Denote the orthogonal truncation of J ((dn), (an), (bn)) by

Jn =


d1 a1

b1 d2
. . .

. . .
. . . an−1

bn−1 dn

 (1.6)

for n ≥ 1.

Define

Λ(J) = {λ ∈ Limn→∞λn : λn is an eigenvalue of Jn}, (1.7)

where Limn→∞λn is the set of limit points of the sequence (λn).

The aim of the research is finding classes of tridiagonal operators for which σ(J) ⊂ Λ(J) or σ(J) ⊃
Λ(J). This can be done if we assume that J is an unbounded operator with compact resolvent.

2 σ(J) ⊂ Λ(J)

Remark 2.1. In the case of self-adjoint operators, among other, the following results are known.

1. If A is a bounded self-adjoint operator in l2 then σ(A) ⊂ Λ(A) [26].

2. If J is a self-adjoint operator given by a real Jacobi matrix, then σ(J) ⊂ Λ(J) (classical
result for real Jacobi matrices).

The problem of approximation of eigenvalues for unbounded self-adjoint Jacobi matrices acting in
l2 by the eigenvalues of finite matrices was considered also in [27], [28],[29], [30], [31], [17] and in
others.

The following results are known for complex or non-selfadjoint tridiagonal operators.

Remark 2.2. If J is represented by a complex tridiagonal matrix J ((dn), (an), (bn)) and it is a
compact operator, then σ(J) ⊂ Λ(J) (classical result, Theorem 18.1, [23]).

Remark 2.3. Real tridiagonal infinite matrices where investigated by H. Volkmer. The enough
conditions on real sequences (an), (bn), (dn) to obtain the inclusion σ(J) ⊂ Λ(J) are presented in
[15].

Remark 2.4. Y. Ikebe, N. Asai, Y. Miyazaki and D. Cai have proved that if limn→∞ |dn| = ∞ and
(an) = (bn) are bounded complex sequences then σ(J) ⊂ Λ(J) [7].

We generalize the result given in [7]. The new result for complex tridiagonal operators is as follow.

Theorem 2.1. If J has a compact resolvent,

lim
n→∞

|dn| = ∞

and

lim
n→∞

|an−1|+ |an|+ |bn−1|+ |bn|
|dn|

= 0,

then σ(J) is discrete and σ(J) ⊂ Λ(J).
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Proof. The idea of the proof from [7] works in this case. Let C be a diagonal operator in l2 given
by the matrix

J

((
1√
dn

)
, (0), (0)

)
. (2.1)

Obviously, C is compact.

Next, suppose that L is an operator in l2 defined by

J ((0), (an), (bn)) . (2.2)

Observe that the matrix

J

(
(0),

(
an√

dn
√
dn+1

)
,

(
bn√

dn
√
dn+1

))
(2.3)

represents a compact operator in l2 if and only if

lim
n→∞

|an|+ |bn|√
|dn||dn+1|

= 0, (2.4)

but the last equation is true because of the assumption. Moreover, CLC has the matrix
representation (2.3). Then we can write

J ⊇ L+ C−2 = C−1(CLC + I)C−1. (2.5)

Without loss of generality we can assume that J is invertible in B(l2). Thus CLC + I is also
invertible in B(l2), so

A := J−1 = C(CLC + I)−1C (2.6)

is a compact operator. Then Jx = λx if and only if Ax = 1
λ
x for λ ∈ C and x ∈ l2 \ {0}.

Let {en : n = 1, 2, ...} be a canonical basis in l2 and denote by Pn the ortogonal projection on
Hn = span{e1, ..., en}. Then Pn admits the block matrix representation

Pn =

(
In 0
0 0

)
, (2.7)

where In is the identity on Hn.

Denote
An = PnC(PnCLCPn + I)−1CPn (2.8)

and observe that

PnCLCPn + I =

(
CnJnCn 0

0 I
′
n

)
, (2.9)

where

Cn =


1√
d1

0

0 1√
d2

. . .

. . .
. . . 0
0 1√

dn


and I

′
n is the identity on l2 ⊖Hn.

The operator K = CLC is compact; therefore,

∥PnKPn −K∥ → 0, n → ∞, (2.10)
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and also
∥(PnKPn + I)− (K + I)∥ → 0, n → ∞. (2.11)

Notice that K + I is invertible in B(l2), so there exists n0 such that PnKPn + I is invertible for
n ≥ n0 and

∥(PnKPn + I)−1 − (K + I)−1∥ → 0, n → ∞. (2.12)

Thus An exists for n ≥ n0; moreover,
∥An −A∥ ≤ (2.13)

≤ ∥PnAPn −A∥+ ∥C∥2∥(PnKPn + I)−1 − (K + I)−1∥
and

∥An −A∥ → 0, n → ∞. (2.14)

The equation (2.8) implies that

An =

(
J−1
n 0
0 0

)
. (2.15)

So if λ ̸= 0 is an eigenvalue of J then µ = 1
λ

is an eigenvalue of A. According to the projective
method approach ([23], Th. 18.1) we deduce that there exists a sequence (µn)n≥n0 such that µn is
an eigenvalue of An and µ = limn→∞ µn. Notice that if µn ̸= 0 is an eigenvalue of An then λn = 1

µn

is an eigenvalue of Jn. Then λ = limn→∞ λn and finally σ(J) ⊂ Λ(J).

3 Λ(J) ⊂ σ(J)

The investigations related to the inclusion Λ(J) ⊂ σ(J) in the class of tridiagonal infinite matrices
are complicated. If J ((dn), (an), (an)) is real and symmetric, then the inclusion Λ(J) ⊂ σ(J) holds
under some conditions (see [26], [28], [29], [32] and others). The complex case looks interesting too.
We successfully use the approach presented in [32], applied to real symmetric Jacobi matrices, for
complex tridiagonal matrices.

Theorem 3.1. Let {en : n = 1, 2, 3, ...} be the canonical basis for l2 and Pn be the orthogonal
projection on Hn = span{e1, ..., en}. Assume that the matrix J ((dn), (an), (bn)) defines a linear
operator J in l2 and Jn is given by (1.6). If for all bounded complex sequences (λn)

∞
n=1 such that

λn ∈ σ(Jn), n ≥ 1, and for all sequences (xn)
∞
n=1 of eigenvectors such that PnJxn = λnxn, ∥xn∥ = 1

and xn ∈ Hn for n ≥ 1,
lim

n→∞
|bn(xn, en)| = 0, (3.1)

then Λ(J) ⊂ σ(J).

Proof. We follow [32] and [29]. Let λ ∈ Λ(J). Without loss of generality we can assume λ =
limn→∞ λn, where λn is an eigenvalue of Jn. Let ξn = (ξn,1, ξn,2, ..., ξn,n)

⊤ be an eigenvector of Jn

such that Jnξn = λnξn and ∥ξn∥ = 1 for n ≥ 1. Then

PnJxn = PnJPnxn = λnxn,

where xn =
∑n

k=1 ξn,kek.

Next notice that
Jxn = λnxn + bn(xn, en)en+1, (3.2)

and
∥Jxn∥2 = ∥λn∥2 + ∥bn(xn, en)∥2. (3.3)
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Then from
∥(J − λ)xn∥2 = ∥Jxn∥2 + |λ|2 − 2Reλ(Jxn, xn), (3.4)

(3.2) and (3.3) we derive

∥(J − λ)xn∥2 = |λn|2 + |λ|2 − 2Reλλn + |bn(xn, en)|2 = (3.5)

= |λn − λ|2 + |bn(xn, en)|2. (3.6)

So, there exists (xn)
∞
n=1 such that ∥xn∥ = 1 for n ≥ 1 and ∥(J − λ)xn∥ → 0, as n → ∞, if (3.1)

holds. This ensures that λ belongs to the spectrum of J.

Now we are going to analyze the condition (3.1). Let (xn) be a sequence considered in Theorem
3.1, so xn =

∑n
k=1 ξn,kek for n ≥ 1 and ξn = (ξn,1, ξn,2, ..., ξn,n)

⊤ ∈ Cn is an eigenvector for Jn

such that Jnξn = λnξn and ∥ξn∥ = ∥xn∥ = 1. Then (3.1) could be writen as

lim
n→∞

|bnξn,n| = 0. (3.7)

Next we follow [32] to estimate |bnξn,n| for large n. The equality Jnξn = λnξn is equivalent to the
system 

bn−1ξn,n−1 + (dn − λn)ξn,n = 0,
bn−k−1ξn,n−k−1 + (dn−k − λn)ξn,n−k + an−kξn,n−k+1 = 0,

k = 1, . . . , n− 2;
(d1 − λn)ξn,1 + a1ξn,2 = 0.

(3.8)

We have assumed that the sequence (λn) is bounded, so |λn| ≤ M for n ≥ 1. Let K ≥ 1 be an
integer. There exists n0 such that |dn−K | > M + 1 for n ≥ n0. Then we use (3.8) to obtain the
following estimates

|ξn,n−k| ≤ (M + 1)

(
|bn−k−1|
|dn−k|

|ξn,n−k−1|+
|an−k|
|dn−k|

|ξn,n−k+1|
)

(3.9)

for k = 1, ...,K, and

|ξn,n| ≤ (M + 1)
|bn−1|
|dn|

|ξn,n−1|, (3.10)

where n > n0.

Denote
Bn = max{|an−1|, ..., |an−K |, |bn−1|, ..., |bn−K |} (3.11)

and
Dn = min{|dn|, ..., |dn−K |}. (3.12)

Follow the idea that was used in [32], from (3.9), (3.10), (3.11) and (3.12) we derive

|ξn,n| ≤ c(M,K)

(
Bn

Dn

)K

(3.13)

for large n, where a constant c(M,K) > 0 is independent on n.
So if

lim
n→∞

|bn|
(
Bn

Dn

)K

= 0, (3.14)

then (3.1) holds.
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Corollary 3.2. If J is an operator given by a tridiagonal matrix (1.1), where limn→∞ |dn| = +∞,
and there exists an integer K ≥ 1 such that

lim
n→∞

|bn|
(
Bn

Dn

)K

= 0,

where Bn, Dn are given by (3.11) and (3.12), then Λ(J) ⊂ σ(J).

Corollary 3.3. Let J be an operator given by a tridiagonal matrix (1.1) and |an|, |bn| = O(nβ)
and 1

|dn| = O(n−α), as n → ∞. If α > β and α ≥ 0 then Λ(J) ⊂ σ(J).

Proof. If α > β then there exists an integer K ≥ 1 such that Kα > (K + 1)β. So

|bn|
(
Bn

Dn

)K

= O
(
n(K+1)β−Kα

)
, n → ∞

and (3.14) holds.

4 Conclusion

The assumptions concerning the sequences, that determine the matrix J ((dn), (an), (bn)),
are very close in Theorem 2.1 as well as in Corollary 3.2. Moreover, we could observe that the
existing criteria (see e.g. [7], [10], [13] and [15]), which guarantee compactness of the resolvent for
non-symmetric tridiagonal operator are given in the terms of the entries of J ((dn), (an), (bn)) . So
there is large class of non-symmetric tridiagonal matrices such that if an operator J is represented
in l2 by the considered matrix then σ(J) = Λ(J).
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