
Journal of Advances in Mathematics and Computer Science

26(5): 1-20, 2018; Article no.JAMCS.39798

ISSN: 2456-9968

(Past name: British Journal of Mathematics & Computer Science, Past ISSN: 2231-0851)

A Heuristic Fast Gradient Descent Method for
Unimodal Optimization

George Anescu1∗

1Power Plant Engineering Faculty, Polytechnic University of Bucharest, Romania.

Author’s contribution

The sole author designed, analyzed and interpreted and prepared the manuscript.

Article Information

DOI: 10.9734/JAMCS/2018/39798
Editor(s):

(1) Jacek Dziok, Professor, Institute of Mathematics, University of Rzeszow, Poland.
Reviewers:

(1) Ali Durmus, Erciyes University, Turkey.
(2) Hongli Yang, Mathematics and Systems Science College, Shandong University of Science and

Technology, China.
Complete Peer review History: http://sciencedomain.org/review-history/23378

Received: 31st December 2017

Accepted: 20th February 2018

Original Research Article Published: 28th February 2018

Abstract

The known gradient descent optimization methods applied to convex functions are using the
gradient’s magnitude in order to adaptively determine the current step size. The paper is
presenting a new heuristic fast gradient descent (HFGD) approach, which uses the change in
gradient’s direction in order to adaptively determine the current step size. The new approach
can be applied to solve classes of unimodal functions more general than the convex functions
(e.g., quasi-convex functions), or as a local optimization method in multimodal optimization.
Testing conducted on a testbed of 16 test functions showed an overall much better efficiency
and an overall better success rate of the proposed HFGD method when compared to other three
known first order gradient descent methods.

Keywords: Optimization; unimodal/multimodal functions; convex optimization; quasi-convex
optimization; golden ratio; fibonacci sequence; first-order optimization algorithms;
Heuristic Fast Gradient Descent (HFGD); Backtracking Line Search (BLS); Accelerated
Gradient Descent (AGD); Fast Iterative Shrinkage/Thresholding Algorithm (FISTA).

2010 Mathematics Subject Classification: 68T 20, 68W10, 90C 26, 90C 56, 90C 59.

*Corresponding author: E-mail: george.anescu@gmail.com;

http://sciencedomain.org/review-history/23378

Anescu; JAMCS, 26(5): 1-20, 2018; Article no.JAMCS.39798

1 Introduction

The general optimization problem can be formulated as:

minimize f(x)

subject to x ∈ D,
(1)

where x is a real vector of decision variables, D ⊂ Rn is a subset of the n-dimensional real vector
space and f : D → R is a real value objective function. Usually, D is defined as a boxed domain:

D = {x : l ≤ x ≤ u}, (2)

where l and u are explicit, finite, component-wise lower and upper bounds on x. By convention,
only the minimization problems are studied, considering that the maximization problem for f(x)
is equivalent to, and can be treated as, the minimization problem for −f(x). In most cases the
function f(x) is at least continuous on D, although other stronger restrictions can be imposed,
such as smoothness: the function f(x) is differentiable with continuous derivatives; or piecewise
smoothness: D can be broken into distinct pieces and on each piece the function f(x) is differentiable
with continuous derivatives.

Since the present study is concerned with unimodal functions, a rigorous approach to modes
and unimodality is required, and it will be the object of Section 2. Section 3 will present some
important subsets of unimodal functions and will introduce some interesting optimization function
examples. Section 4 will present the design details of the proposed Heuristic Fast Gradient Descent
(HFGD) algorithm. Section 5 will present the set of test optimization problems used in the testing
experiments and the statistical results obtained by comparing the proposed HFGD method with
other known first-order gradient descent methods: Backtracking Line Search (BLS, [1]) and two
accelerated variants of BLS : Nesterov’s Accelerated Gradient Descent (AGD, [2], [3]) and Fast
Iterative Shrinkage-Thresholding Algorithm (FISTA, [4]). Finally, Section 6 will summarize the
results of the paper, draw the conclusions and indicate some further research directions.

2 Introduction to Unimodal Functions

The presentation in this section is based on the definitions introduced in [5], with the main results of
the referenced paper presented without repeating the demonstrations. First, the objective function
f(x) is extended to fext : Rn → (−∞,+∞) defined as:

fext(x) =

{
f(x),x ∈ D
+∞,x /∈ D

(3)

For simplification of the notations, in the presentation that follows it will be assumed that function
f(x) is already extended, so that the notation f(x) is further used instead of fext(x). For an
objective function f(x), the point x∗∗ satisfying

f(x∗∗) ≤ f(x), ∀x ∈ Rn (4)

is called the global minimum point. The point x∗, for which there exists an open sphere B(x∗; ϵ1)
of radius ϵ1 > 0 with x∗ as center, and satisfying

f(x∗) ≤ f(x), ∀x ∈ B(x∗; ϵ1), (5)

is called a local minimum point. If the objective function’s values in neighboring points of a local
minimum point, other than the local minimum point, are larger than the value in the minimum
point, i.e. there exists an open sphere B(x∗

s ; ϵ2) of radius ϵ2 > 0 with x∗
s as center, such that

2

Anescu; JAMCS, 26(5): 1-20, 2018; Article no.JAMCS.39798

f(x∗
s) < f(x), ∀x ∈ B(x∗

s ; ϵ2),x ̸= x∗
s , (6)

then the point x∗
s is called a local minimum point in the narrow sense. The objective functions

having only minimum points in the narrow sense are easier to handle, and their local minimum
points in the narrow sense are called modes, while the objective functions with only one local
minimum point in the narrow sense are known as unimodal functions. For unimodal functions, any
minimum mode found is guaranteed to be the global minimum mode. A difficulty appears when the
objective function has flat (or plateau) regions, i.e. compact subsets of D for which f(x) is constant,
in which case the set of local minimum points can be extended to the flat regions, but not all the
flat regions can be considered as modes. A very good example of such a function is given in [5],
and its graph representation is reproduced here in Fig. 1.

Fig. 1. Flat regions function example ([5])

The function in Fig. 1 has 2 local minimum points in the narrow sense, x∗
1 and x∗

2, and 3 minimum
point flat regions, x∗

3, x
∗
4 and x∗

5, but only x∗
1, x

∗
2 and x∗

5 can be considered modes, while x∗
3 and x∗

4 are
only stationary points, although they satisfy the definition of local minimum points. Furthermore,
the points x∗

3 in the flat region are local maximum points. Intuitively, a unimodal function has
only one minimum point or minimum flat region and the rest of the graph goes up from there, but
a more rigorous mathematical definition is needed in order to cover all the flat region cases, and
it was the object of study in [5]. In the referenced paper [5] the concept of minimal value set is
introduced, and based on the number of connected components of the minimal value set, a function
is considered unimodal when the number of connected components is 1, and multimodal when he
number of connected components > 1. But in order to rigorously introduce the concept of minimal
value set, some preliminary definitions are needed ([5]):

Definition 1: Level set of function f(x) on α.

For an objective function f(x) on α ∈ R, the level set L(α) ⊂ Rn, and respectively the minor level
set Ls(α), are defined as follows:

L(α) = {x|f(x) ≤ α,x ∈ Rn}, (7)

3

Anescu; JAMCS, 26(5): 1-20, 2018; Article no.JAMCS.39798

Ls(α) = {x|f(x) < α,x ∈ Rn}. (8)

By the assumption that f(x) is continuous and extended (according to (3)), L(α) is always a closed
set.

Definition 2: Connected level set Lc(α;x) of x:

The subset of the level set L(α) which is a connected component containing x is called the connected
level set containing x, and is written as Lc(α;x). As an illustration, see Fig. 2 reproduced from
[5]. The subset of the level set L(f(x)) which is a connected level set containing x is written as
Lc(f(x)). As an illustration, see Fig. 3 reproduced from [5]. Similarly, the subset of the minor
level set Ls(α) which is a connected component containing x is called the connected minor level set
containing x, and is written as Ls

c(α;x).

Fig. 2. Connected level set Lc(α;x) example ([5])

Definition 3: The minimal value set Ec(f(x
∗)) for function value f(x∗) at point x:

If there exists x∗ ∈ Rn and the condition

L(f(x∗)− ϵ) ∩ Lc(f(x
∗)) = ∅ (9)

is satisfied for any ϵ > 0, the above Lc(f(x
∗)) is called the minimal value set at x∗, and it is written

as Ec(f(x
∗)). Figs. 4 and 5, reproduced from [5], show the cases where Ec(f(x

∗)) is the minimal
value set, and respectively Ec(f(x

∗)) is not the minimal value set.

Definition 4: Minimal value set E∗:

The set of all x∗ that satisfy Eq. (9) is called the minimal value set E∗. In other words, the minimal
value set E∗ is represented as follows:

E∗ = {x∗|L(f(x∗)− ϵ) ∩ Lc(f(x
∗)) = ∅, ∀ϵ > 0,x∗ ∈ Rn}. (10)

Definition 5: Modality of function f(x), unimodal (minimal) function and multimodal (minimal)
function.

4

Anescu; JAMCS, 26(5): 1-20, 2018; Article no.JAMCS.39798

Fig. 3. Connected level set Lc(α;x) example ([5])

Fig. 4. The case where x∗ is the minimal value set ([5])

For a function f : Rn → (−∞,+∞), the number N∗
c = |E∗| of connected components of the minimal

value set E∗ (called minimal value set components) is called the (lower) modality of the function
f(x). Based on this definition, the function with N∗

c = 1 is defined as the unimodal (minimal)
function, and the function with N∗

c > 1 is defined as the multimodal (minimal) function.

5

Anescu; JAMCS, 26(5): 1-20, 2018; Article no.JAMCS.39798

Fig. 5. The case where x∗ is not the minimal value set ([5])

Two important Theorems are demonstrated in [5]: (1) The set of local minimum points includes
the minimal value set, and (2) The minimal value set includes the set of minimum points in the
narrow sense. The presented theoretical results allow to rigorously discriminate among the different
flat regions (with minimum points) and to classify them in: (1) minimum modes, (2) maximum
modes, and (3) flat regions that are neither minimum modes, nor maximum modes. For the defined
optimization problem (1) only the flat regions of type (1) are of interest.

3 Important Subsets of Unimodal Functions

The most researched subset, from the general set of unimodal functions, is the one formed by the
convex functions. In the conditions of definition (1), the function f(x) is convex if it satisfy the
additional condition:

f(λx1 + (1− λ)x2) ≤ λf(x1) + (1− λ)f(x2),∀x1,x2 ∈ D, ∀λ ∈ [0, 1]. (11)

In order to eliminate the possibility of a flat region, the additional condition for a strictly convex
function with a minimum point in the narrow sense is:

f(λx1 + (1− λ)x2) < λf(x1) + (1− λ)f(x2),∀x1 ̸= x2 ∈ D, ∀λ ∈ (0, 1). (12)

There are many known methods to solve convex optimization problems, first order methods (based
only on the first order derivatives, which should exist) and second order methods (based on the
second order derivatives, which should exist). A less restrictive condition than (11) is generating a
wider subset of unimodal functions, the quasi-convex functions:

f(λx1 + (1− λ)x2) ≤ max{f(x1), f(x2)}, ∀x1,x1 ∈ D, ∀λ ∈ [0, 1], (13)

and the corresponding condition for strictly quasi-convex functions is:

f(λx1 + (1− λ)x2) < max{f(x1), f(x2)}, ∀x1 ̸= x1 ∈ D, ∀λ ∈ (0, 1). (14)

6

Anescu; JAMCS, 26(5): 1-20, 2018; Article no.JAMCS.39798

For a comprehensive study of the quasi-convex functions see [6]). The meaning of strict quasi-
convexity is that along any stretch of the curve f(λx1 + (1− λ)x2), 0 ≤ λ ≤ 1, the highest point is
one of the endpoints. An alternative definition is to require that the level curves:

Cα = {x : f(x) = α, α ∈ R} (15)

are convex curves. Another important Theorem, demonstrated in [5], is that the quasi-convex
functions are unimodal functions, and so they are a subset of the unimodal functions. Due to the
inequality:

λf(x1) + (1− λ)f(x2) ≤ max{f(x1), f(x2)}, (16)

it is obvious that all the convex functions are quasi-convex functions, and therefore the quasi-
convexity can be considered a generalization of the convexity (the subset of convex functions is
including the subset of quasi-convex functions). The reciprocal is not true and, as a counter-example,
the quasi-convex unidimensional function presented in Fig. 6, which has regions of concavity, can
be considered.

Fig. 6. Quasi-convex function example

For this reason, first order and second order optimization methods designed for convex functions
are usually not successful when applied to quasi-convex functions. With the subset of quasi-convex
functions the general set of unimodal functions are not exhausted. Not all the unimodal functions
are quasi-convex, and in order to prove it a simple counter-example is sufficient. Consider the
function:

f15(x) =

n∑
j=1

x4
j + 16

n∑
j=1

x2
jx

2
j+1,

−2 ≤ xj ≤ 2, j = 1, . . . , n, xn+1 = x1,

(17)

with its 2-dimensional case being presented in Fig. 7.

This function is obviously unimodal with the minimum of 0 in (0, 0, . . . , 0). But if we consider
the points x1 = (1, 0, 0, . . . , 0), x2 = (0, 1, 0, . . . , 0) and x3 = x1+x2

2
= (0.5, 0.5, 0, . . . , 0), we have

f(x3) =
1
16

+ 1
16

+ 16× 1
16

= 1 + 1
8
> 1 = max{1, 1} = max{f(x1), f(x2)}, which proves that f(x)

is not quasi-convex. For a comprehensive introduction in the field of convex optimization see [3].

7

Anescu; JAMCS, 26(5): 1-20, 2018; Article no.JAMCS.39798

Fig. 7. Example of non-quasi-convex unimodal function

4 The Heuristic Fast Gradient Descent Algorithm

The Heuristic Fast Gradient Descent (HFGD) algorithm is designed in order to approach general
unimodal optimization functions with the important assumption (restriction) that the functions
should not have flat regions of type (3): i.e. flat regions that are neither minimum modes, nor
maximum modes (according o the classification in Section 2). Some simple strategies can be devised
in order to approach the first two types of flat regions. For example, for the flat regions of type
(2) (maximum modes), the search algorithm can maintain the search direction and the search
step constant (to the last calculated values) when a flat region condition is detected (based on 0
derivatives), and eventually it will be able to escape from the flat region in a finite number of steps.
For flat regions of type (1) (minimum modes) the search algorithm can also maintain the search
direction and the search step constant (to the last calculated values) when a flat region condition is
detected, and if after a finite (large enough) number of steps it cannot escape from the flat region,
it can decide that the flat region is a minimum mode. The problem with the flat regions of type
(3) is that the escape path can be very narrow and difficult to reach, even after a large number of
steps. Therefore it can become difficult to decide if a flat region is of type (1), or of type (3). In
order to clarify these aspects a function example was specially designed:

f16(x) = −(n+ 1)e

−10
√

n


n∑

j=1

(xj − 1)2


1/2

+max{
n∑

j=1

x2
j , n+

0.01

n
− 0.2}

− 2 ≤ xj ≤ 2, j = 1, . . . , n,

(18)

8

Anescu; JAMCS, 26(5): 1-20, 2018; Article no.JAMCS.39798

the 2-dimensional case of it being represented in Fig. 8.

Fig. 8. Example of quasi-convex unimodal function with flat region of type (3))

This function is unimodal, according to the definitions in Section 2, with the minimum of −1 in
(1, 1, . . . , 1), but it can be seen from Fig. 8 that the escape path to the minimum point is very
narrow.

Another important assumption on HFGD method is that it should be able to correctly calculate
the steepest descent direction (gradient), or a good numerical approximation to it.

The main idea of the HFGD algorithm is to obtain a faster convergence to the optimization solution
by using an adaptive step size, which is updated (increased or decreased) dependent of the change
in gradient’s direction. The main steps of the HFGD algorithm are summarized below in Algorithm
1 and the algorithmic steps are further detailed.

Step 1 : Set the computing precision ϵ, which is used as the termination condition for breaking the

while loop. Choose φ ∈ [1.5, 2], with the recommended value φ =
√
5+1
2

, the Golden Ratio Number.

9

Anescu; JAMCS, 26(5): 1-20, 2018; Article no.JAMCS.39798

Algorithm 1 HFGD algorithm

1: Set ϵ and φ
2: Initialization for k = 0: Set x0 and γ1
3: Set k = 1
4: while γk < ϵ do
5: Update γk+1

6: Update the solution xk+1

7: Increment k := k + 1

Step 2 : Initialization for k = 0: Choose γ1 in a uniform pseudo-randommanner from the real interval
[0.2, 0.5]. Choose the initial position x0 in a uniform pseudo-random manner in the limiting box D
defined by (2). Compute the unit vector in gradient’s direction:

n0 =
∇f(x0)

||∇f(x0)||2
. (19)

Step 5 : Compute the unit vector:

nk =
∇f(xk)

||∇f(xk)||2
. (20)

Compute the scalar product as a measure of change in gradient’s direction :

pk = nk−1 · nk, (21)

with −1 ≤ pk ≤ 1. Compute φk = ϕ(pk), with the function ϕ(p) defined by:

ϕ(p) =

[
1

2

(
φ+

1

φ

)
− 1

]
p2 +

1

2

(
φ− 1

φ

)
p+ 1, (22)

the function ϕ(p) being derived by polynomial (Lagrange) interpolation in 3 points: ϕ(−1) = 1
φ
,

ϕ(0) = 1, ϕ(1) = φ (see Fig. 9).

Fig. 9. The function ϕ(p)

Update the method’s step γk+1:

γk+1 = φkγk. (23)

The main idea in Step 5 is to make the updated γk+1 dependent on the change in gradient’s
direction. If the angle of change in gradient’s direction, θk = arccos(pk), is less than the right

10

Anescu; JAMCS, 26(5): 1-20, 2018; Article no.JAMCS.39798

angle (θk < π/2), then there should be an increase in γk+1, but if it is greater than the right angle
(θk > π/2), then there should be a decrease in γk+1, with γk+1 = γk maintained unchanged for
θk = π/2. Also, if there is no change in gradient’s direction, then the increase in γk+1 should be
maximal, γk+1 = φγk, while if there is a change in the opposed direction the decrease in γk+1 should
be maximal, γk+1 = γk/φ. The proposed ϕ(pk) function satisfies all these conditions and provides
a good fitting for the other intermediate values of the angle of change in gradient’s direction.

Step 6 : Update the solution xk+1:

xk+1 = xk − γk+1nk. (24)

If f(xk+1) > f(xk), then the new proposed solution xk+1 is not taken, γk+1 is reset to the previous
value:

γk+1 = γk, (25)

and the update equation (24) is applied again. This resetting logic is applied not more than once
for the current iteration.

Note on the Golden Ratio Number: As mentioned above at Step 1, the HFGD optimization method
works well for φ ∈ [1.5, 2], but it was found experimentally that the method is more efficient (faster

convergence) when φ =
√
5+1
2

≈ 1.618034, the Golden Ratio Number (Golden Section, Golden
Proportion, Golden Cut, etc.), which is the recommended value for φ. The Golden Ratio Number
is related to the Fibonacci sequence and it is considered to model the growth and decay rates in
natural processes. There are many studies on the Golden Ratio Number and its applications in
science, technology and arts, for further reading see [7], [8] and [9].

One problem encountered with first order optimization methods is the zig-zagging movement that
appears with some ill-posed optimization problems, where the gradients are pointing approximately
in an orthogonal direction to the direction toward the optimization solution. Due to the zig-zagging
behavior, the optimization methods can converge prematurely to wrong solutions. In order to
cope with the zig-zagging problem, two complementary acceleration techniques are applied: (1) the
Inertia Technique, and (2) the Piercing Technique.

4.1 The inertia technique

The inertia (or momentum) technique is inspired from the acceleration techniques first introduced
by Nesterov in 1983 (see [2], [3]), and it is based on the idea of using more than one of the previous
solutions in order to update the current solution. The variant of Inertia Technique employed by
HFGD is based on statistics applied to a queue structure (FIFO list) maintaining the signs of the
scalar products pk with the purpose to detect when the algorithm presents a dominant zig-zagging
behavior. The recommended queue size, in order to obtain good statistics while reflecting a more
recent and local behavior, is 100. At each iteration k+1 the following statistical ratio is evaluated:

rk+1 =
n−
k+1

n−
k+1 + n+

k+1

, (26)

with n−
k+1 being the number of negative signs in the queue and n+

k+1 being the number of non-

negative signs in the queue (note that n−
k+1 + n+

k+1 is the queue size, most of the time 100). If
rk+1 ≤ 0.50, then it is considered that the zig-zagging behavior is not dominant, and the Inertia
Technique should be applied. When the Inertia Technique is applicable, the following weights are
introduced:

w1 = 0.5− rk+1, (27)

11

Anescu; JAMCS, 26(5): 1-20, 2018; Article no.JAMCS.39798

w2 = 1.0− w1 = 0.5 + rk+1, (28)

and equation (24) is modified to:

xk+1 = xk − w2γk+1nk + w1(xk − xk−1), (29)

where two previous solutions are used, xk and xk−1.

4.2 The piercing technique

The Piercing Technique complements the Inertia Technique when the zig-zagging behavior is dominant,
and it is applied every time when there are two consecutive changes in gradient’s direction with
angles larger than π/2. The main idea in the Piercing Technique is to probe some search directions
approximately perpendicular to the search directions given by the gradients. It is applied immediately
after the update of xk+1 (using (24) or (29), which one is applicable), by first computing the
directional unit vector n according to:

n1 =
xk+1 − xk−1

||xk+1 − xk−1||2
, (30)

n2 =
xk − xk−2

||xk − xk−2||2
, (31)

n =
n1 + n2

||n1 + n2||2
, (32)

and then computing the start position:

xs =
1

2
(xk + xk+1), (33)

and moving from the start position in the determined direction

x′
k+1 = xs + γk+1n. (34)

These ideas are graphically illustrated in Fig. 10.

Fig. 10. The piercing direction

Further, the condition f(x′
k+1) < f(xk+1) is tested, and if it is true then x′

k+1 is taken as the new
solution:

xk+1 = x′
k+1. (35)

12

Anescu; JAMCS, 26(5): 1-20, 2018; Article no.JAMCS.39798

Then, a repeated search in the determined direction is probed with an increasing step size, as long
as the objective function continues to decrease. This search is based on the following iterative
algorithm:

Algorithm 2 Piercing Technique algorithm

1: x′
k+1 = xs + γk+1n

2: γ′
k+1 = φγk+1

3: while f(x′
k+1) < f(xk+1) do

4: xk+1 = x′
k+1

5: γk+1 = γ′
k+1

6: x′
k+1 = xk+1 + γk+1n

7: γ′
k+1 = φγk+1

5 Testing and Results

The testing phase had the purpose to prove that the new proposed HFGD method is competitive
when compared to existing gradient descent algorithms. For comparison, three other first order
algorithms were chosen: Backtracking Line Search (BLS, [1]), a Nesterov’s Accelerated Gradient
Descent (AGD, [2], [3]) scheme (with backtracking) and the Fast Iterative Shrinkage/Thresholding
Algorithm (FISTA, [4]) (with backtracking). A number of 100 runs were conducted for each
considered method and each considered test function, the runs differing in the initial starting point
x0, which was sampled pseudo-randomly (uniform distribution) in the search space, and the initial
method’s step size, γ1 which was sampled pseudo-randomly (uniform distribution) in the [0.2, 0.5]
real interval. Therefore, different run results were obtained and their statistical analysis was needed.

In order to conduct the tests, an appropriate testing methodology was devised (see also [10],
[11], [12]). When the quality of an optimization method is estimated, two (often conflicting)
characteristics are of interest: a small number of function evaluations (NFE) and a high success
rate (SR). For test functions with known solutions, the success can be simply defined as the
achievement of an absolute or relative precision tolerance to the known solutions. By fixing the
tolerance and choosing itermax high enough, so that this in never attained before the tolerance is
attained, it is easy to measure the SR and average NFE to success (µ(NFE)). There are other
testing methodologies frequently applied in practice, like for example based on fixing NFE and
reporting the best, the worst and the median results obtained after a number o runs, but in the
author’s opinion such methodologies are not recognizing the importance of success rate and are
concealing it from reporting. A very efficient method (with a fast convergence), but with a low
success rate, cannot be considered better than a less efficient method, but with a high success rate,
because the former may need many repeated runs in order to obtain the correct result, while the
later may get the correct result in less runs, which can entail a larger overall NFE (obtaining by
summation) for the former compared to the later.

A testbed of 16 (f1, . . . , f16) scalable, unconstrained, unimodal (excepting f7, which has 2 modes)
optimization functions was used for the tests run on the four compared optimization methods. The
first 14 functions are known from the literature ([13], [14], [15], [16], [17], [18]), while the last 2
functions were specially designed for the present study. The analytical expressions of the used
optimization functions are further given:

13

Anescu; JAMCS, 26(5): 1-20, 2018; Article no.JAMCS.39798

• De Jong’s First Function (or sphere model) - minimum of 0 in (0, 0, . . . , 0):

f1(x) =

n∑
j=1

x2
j ,

−100 ≤ xj ≤ 100, j = 1, . . . , n

(36)

• Hyper-Ellipsoid Function - minimum of 0 in (0, 0, . . . , 0):

f2(x) =

n∑
j=1

jx2
j ,

−100 ≤ xj ≤ 100, j = 1, . . . , n

(37)

• Rotated Hyper Ellipsoid Function - minimum of 0 in (0, 0, . . . , 0):

f3(x) =

n∑
i=1

(
i∑

j=1

x2
j

)
,

−100 ≤ xj ≤ 100, j = 1, . . . , n

(38)

• Rosenbrock’s Function - minimum of 0 in (1, 1, . . . , 1):

f4(x) =

n−1∑
j=1

[
100(xj+1 − x2

j)
2 + (1− xj)

2] ,
− 100 ≤ xj ≤ 100, j = 1, . . . , n

(39)

• Gaussian Function - minimum of 0 in (1, 1, . . . , 1):

f5(x) = 1− e

− 1
n2

n∑
j=1

j(xj − 1)2

,

− 5 ≤ xj ≤ 5, j = 1, . . . , n

(40)

• Power of Differences Function - minimum of 0 in (1, 1, . . . , 1):

f6(x) =

n−1∑
j=1

(xj+1 − xj)
2 + x2

n + x1(x1 − 2),

− 100 ≤ xj ≤ 100, j = 1, . . . , n

(41)

• Powell’s Function - minima of −19n (−190 for n = 10, −380 for n = 20 and −570 for
n = 30,) in (−10,−10, . . . ,−10) and (10, 10, . . . , 10):

f7(x) =

n∑
j=1

(|xj | − 1)2 −
n−1∑
j=1

xjxj+1 − xnx1,

− 10 ≤ xj ≤ 10, j = 1, . . . , n

(42)

14

Anescu; JAMCS, 26(5): 1-20, 2018; Article no.JAMCS.39798

• Nesterov’s Function - ρ = 100, minimum of 0 in (1, 1, . . . , 1):

f8(x) =
1

4
(x1 − 1)2 + ρ

n−1∑
j=1

(xj+1 − 2x2
j + 1)2,

− 5 ≤ xj ≤ 5, j = 1, . . . , n

(43)

• Schwefel’s Ridge - minimum of 0 in (0, 0, . . . , 0):

f9(x) =

n∑
i=1

(
i∑

j=1

xj

)2

,

−100 ≤ xj ≤ 100, j = 1, . . . , n

(44)

• Neumaier Function #3 - minimum of −n(n + 4)(n − 1)/6 (−210 for n = 10, −1520 for
n = 20, and −4930 for n = 30) in xj = j(n− j + 1),
j = 1, . . . , n:

f10(x) =

n∑
j=1

(xj − 1)2 −
n∑

j=2

xjxj−1,

−n2 ≤ xj ≤ n2, j = 1, . . . , n

(45)

• Zakharov’s Function - minimum of 0 in (0, 0, . . . , 0):

f11(x) =

n∑
j=1

x2
j +

(
n∑

j=1

0.5jxj

)2

+

+

(
n∑

j=1

0.5jxj

)4

,−5 ≤ xj ≤ 10, j = 1, . . . , n

(46)

• High Conditioned Elliptic Function - minimum of 0 in (0, 0, . . . , 0):

f12(x) =
n∑

j=1

(
106
) j−1

n−1 x2
j ,

−100 ≤ xj ≤ 100, j = 1, . . . , n

(47)

• Bent Cigar Function - minimum of 0 in (0, 0, . . . , 0):

f13(x) = x2
1 + 106

n∑
j=2

x2
j ,

−100 ≤ xj ≤ 100, j = 1, . . . , n

(48)

15

Anescu; JAMCS, 26(5): 1-20, 2018; Article no.JAMCS.39798

• Discus Function - minimum of 0 in (0, 0, . . . , 0):

f14(x) = 106x2
1 +

n∑
j=2

x2
j ,

−100 ≤ xj ≤ 100, j = 1, . . . , n

(49)

• Unimodal Non-Quasi-Convex Example Function - the same as the function example given in
Section 2), with the minimum of 0 in (0, 0, . . . , 0):

f15(x) =
n∑

j=1

x4
j + 16

n∑
j=1

x2
jx

2
j+1,

−2 ≤ xj ≤ 2, j = 1, . . . , n, xn+1 = x1

(50)

• Almost Plateau Quasi-Convex Function - it is a modification to the flat region function
f16(x) from Section 4, with a small slope introduced toward the minimum mode, in order to
help the escape of the optimization algorithm from the flat region. The minimum is −1 in
(1, 1, . . . , 1):

f16(x) = −(n+ 1)e

−10
√

n


n∑

j=1

(xj − 1)2


1/2

+

+max{
n∑

j=1

x2
j , n+

0.01

n
− 0.2 +

0.001

n3

n∑
j=1

(xj − 1)2}

− 2 ≤ xj ≤ 2, j = 1, . . . , n

(51)

The 16 scalable test functions were tested for 3 different increasing search space dimensions (n = 10,
n = 20 and n = 30), in order to study the impact of the increase in the search space dimension on
the performance of the tested optimization methods.

Table 1 presents the comparative testing results obtained for the search space dimension n = 10.
It can be observed that the novel HFGD method was the only one capable to solve all the test
problems. Also, from the efficiency perspective, HFGD clearly surpassed all the other methods
with the exception of f1, but in that case the difference was very small, considering that all the
tested methods were capable to solve f1 very efficiently. From the success rate perspective, HFGD
surpassed the other methods, with the exception of f4 and f7, for which AGD gave better results.
Notice that all methods had difficulties in solving f8 (which is known as a very difficult problem)
and only HFGD was capable to solve the specially designed non-quasi-convex function f15.

Table 2 presents the comparative testing results obtained for the search space dimension n = 20. It
can be observed that the novel HFGD method was again the only one capable to solve all the test
problems. The obtained efficiency and success rate comparative characteristics were similar to the
ones in Table 1. The function f8 was still difficult to solve for all methods, while BLS, AGD and
FISTA were still not capable to solve f15, and additionally f16 (the specially designed quasi-convex
function with almost a flat region).

16

Anescu; JAMCS, 26(5): 1-20, 2018; Article no.JAMCS.39798

Table 3 presents the comparative testing results obtained for the search space dimension n = 30.
It can be observed that the novel HFGD method was again the only one capable to solve all the
test problems. The obtained efficiency and success rate comparative characteristics were similar to
the ones in Tables 1 and 2. The function f8 was still difficult to solve for all methods, while BLS,
AGD and FISTA were still not capable to solve f15 and f16.

Table 1. HFGD versus BLS , AGD and FISTA, n = 10, runs = 100, tolerance = 0.1%

Fn SR% µ(NFE) SR% µ(NFE) SR% µ(NFE) SR% µ(NFE)
FGD FGD BLS BLS AGD AGD FISTA FISTA

f1 100% 39 100% 31 100% 36 100% 41
f2 100% 49 100% 300 100% 236 100% 429
f3 100% 122 100% 676 100% 563 100% 615
f4 61% 7666 65% 61199 90% 63639 89% 78613
f5 100% 16 100% 75 100% 64 100% 69
f6 100% 805 0% N/A 6% 5692 4% 9874
f7 53% 24 5% 35 88% 599 74% 199
f8 12% 1707 6% 30386 12% 14551 9% 3877
f9 100% 291 100% 1585 0% N/A 97% 7158
f10 100% 105 100% 149 100% 147 100% 148
f11 100% 275 86% 3106 94% 6695 80% 4486
f12 100% 49 100% 308 100% 543 100% 557
f13 100% 294 1% 14758 100% 103264 100% 121338
f14 100% 386 0% N/A 100% 162940 69% 176857
f15 100% 40 0% N/A 0% N/A 0% N/A
f16 100% 375 99% 569 13% 1869 12% 2060

Table 2. HFGD versus BLS, AGD and FISTA, n = 20, runs = 100, tolerance = 0.1%

Fn SR% µ(NFE) SR% µ(NFE) SR% µ(NFE) SR% µ(NFE)
FGD FGD BLS BLS AGD AGD FISTA FISTA

f1 100% 41 100% 31 100% 48 100% 48
f2 100% 59 100% 564 100% 915 100% 905
f3 100% 137 100% 765 100% 718 100% 715
f4 58% 9738 62% 100572 88% 65531 86% 80872
f5 100% 20 100% 100 100% 90 100% 91
f6 100% 2207 0% N/A 1% 16405 0% 29824
f7 52% 31 1% 36 32% 1384 24% 1657
f8 10% 1303 10% 21249 14% 18258 12% 17250
f9 100% 459 92% 5912 91% 30062 96% 29903
f10 100% 224 100% 479 100% 314 100% 306
f11 100% 311 87% 17912 66% 20558 65% 17110
f12 100% 49 100% 309 100% 644 100% 657
f13 100% 259 0% N/A 100% 141876 100% 126689
f14 100% 412 0% N/A 44% 148371 47% 152574
f15 100% 39 0% N/A 0% N/A 0% N/A
f16 100% 777 0% N/A 0% N/A 0% N/A

17

Anescu; JAMCS, 26(5): 1-20, 2018; Article no.JAMCS.39798

Table 3. HFGD versus BLS, AGD and FISTA, n = 30, runs = 100, tolerance = 0.1%

Fn SR% µ(NFE) SR% µ(NFE) SR% µ(NFE) SR% µ(NFE)
FGD FGD BLS BLS AGD AGD FISTA FISTA

f1 100% 42 100% 31 100% 42 100% 42
f2 100% 65 100% 297 100% 420 100% 419
f3 100% 146 100% 672 100% 625 100% 624
f4 56% 9222 69% 59542 85% 58205 81% 82170
f5 100% 23 100% 71 100% 67 100% 66
f6 100% 818 0% N/A 2% 14709 6% 11778
f7 67% 23 3% 46 70% 283 72% 111
f8 11% 571 11% 2964 11% 11763 9% 16351
f9 100% 292 97% 1609 97% 7287 98% 7193
f10 100% 104 100% 151 100% 141 100% 146
f11 100% 277 83% 3567 74% 4603 83% 4093
f12 100% 49 100% 300 100% 566 100% 566
f13 100% 293 1% 184154 100% 132866 100% 137529
f14 100% 385 0% N/A 75% 139047 73% 151233
f15 100% 35 0% N/A 0% N/A 0% N/A
f16 100% 381 0% N/A 0% N/A 0% N/A

6 Conclusions

The presented HFGD algorithm introduced the novel idea of using the gradient direction’s change in
order to vary the step size. The testing conducted on a testbed of 16 test functions showed an overall
much better efficiency and an overall better effectiveness of the novel HFGD method compared
to other three known first-order gradient descent methods, even for convex unimodal functions.
HFGD is heuristic in nature and no rigorous demonstration of its convergence to the correct
solution was provided. Experimentally, it was found that HFGD gives correct results for some
ill-posed optimization problems, only if the Piercing Technique is employed. Therefore the Piercing
Technique is mandatory if black-box optimization models are approached. Further theoretical
research is needed in order to establish the conditions in which HFGD converges to the correct
solution. Further research will be concerned with designing a HFGD variant capable to approach
constrained optimization problems. Also, large dimensional optimization problems, which are very
important in fields like Machine Learning, will be approached. Another research direction will be the
hybridization of HFGD (as a local search technique) with known global optimization metaheuristic
techniques, in order to design improved global optimization methods (so called memetic optimization
methods).

Competing Interests

Author has declared that no competing interests exist.

References

[1] Armijo L. Minimization of functions having lipschitz continuous first partial derivatives.
Pacific J. Math. 1966;16(1):13.

[2] Nesterov Y. A method for solving a convex programming problem with convergence rate
O(1/k2). Soviet Mathematics Doklady. 1983;27(2):372-376.

18

Anescu; JAMCS, 26(5): 1-20, 2018; Article no.JAMCS.39798

[3] Nesterov Y.Introductory lectures on convex optimization: a basic course. Kluwer Academic
Publishers, Boston/Dordrecht/London;2004.

[4] Teboulle M, Beck A. A fast iterative shrinkage-thresholding algorithm for linear inverse
problems. SIAM J. Imaging Sciences. 2009;2(1):183-202.

[5] Kanemitsu H, Miyakoshi M, Shimbo M. Properties of unimodal and multimodal functions
defined by the use of local minimal value set. Scripta Technica. Electron Comm Jpn Pt 3.
1998;81(1):4251.

[6] Greenberg HJ, Pierskalla WP. A review of quasi-convex functions. Operations Research.
1971;19(7):1553-1570.

[7] Elam K. Geometry of design, studies in proportion and composition. Princeton Architectural
Press, New York;1981.

[8] Akhtaruzzaman Md, Shafie AA. Geometrical substantiation of Phi, the golden ratio and
the baroque of nature, architecture, design and engineering. International Journal of Arts.
2011;1(1):1-22.

[9] Dragoi AL. A simple recursive geometrical construct method and some properties and
occurrences of the golden ratio (Phi) in mathematics, physics, chemistry and biology
(including human medicine), also related to the transcendentals PI and to euler’s constant
(e), Accessed Date:30/01/18. [Online].
Available: https://www.researchgate.net/publication/312983942

[10] Anescu G, Prisecaru I. NSC-PSO, A novel PSO variant without speeds and coefficients, in:
proceedings of he 17th international symposium on symbolic and numeric algorithms for
scientific computing. SYNASC 2015, Timisoara, Romania: September 2015;21-24.pp.460-467.

[11] Anescu G. An imperialistic strategy approach to continuous global optimization problem, in:
proceedings of the 16th international symposium on symbolic and numeric algorithms for
scientific computing, SYNASC 2014, Timisoara, Romania: September 2014;22-25.pp.549-556.

[12] Anescu G. Gradual and cumulative improvements to the classical differential evolution
scheme through experiments. Annals of west university of timisoara - Mathematics and
Computer Science. 2016;54(2):13-35.

[13] Moré JJ, Garbow BS, Hillstrom KE. Testing unconstrained optimization software. ACM
Transactions on Mathematical Software. 1981;7(1):1741.

[14] Momin J, Yang XS. A literature survey of benchmark functions for global optimization
problems. Int. Journal of Mathematical Modelling and Numerical Optimisation.
2013;4:150-194.

[15] Molga M, Smutnicki C. Test functions for optimization needs. 2005; Accessed Date:03/11/17.
[Online].
Available: http://www.robertmarks.org/Classes/ENGR5358/Papers/functions.pdf

[16] Gürbüzbalaban M, Overton ML. On Nesterov’s nonsmooth Chebyshev-rosenbrock functions.
Nonlinear Analysis: Theory, Methods & Applications. 2012;75(3):1282-1289.

19

Anescu; JAMCS, 26(5): 1-20, 2018; Article no.JAMCS.39798

[17] Liang JJ, Qu BY, Suganthan PN, Hernandez-Diaz AG. Problem definitions and evaluation
criteria for the CEC 2013 special session on real-parameter optimization, technical report
201212, computational intelligence laboratory. Zhengzhou University, Zhengzhou China And
Technical Report, Nanyang Technological University, Singapore;2013.

[18] Price K, Storn RM, Lampinen JA. Differential evolution: a practical approach to global
optimization. Springer-Verlag Berlin Heidelberg;2005.

——–
c⃝2018 Anescu; !This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted
use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here (Please copy paste the total link in your browser
address bar)
http://www.sciencedomain.org/review-history/23378

20

http://creativecommons.org/licenses/by/4.0

	Introduction
	Introduction to Unimodal Functions
	Important Subsets of Unimodal Functions
	 The Heuristic Fast Gradient Descent Algorithm
	 The inertia technique
	 The piercing technique

	 Testing and Results
	Conclusions

