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| Short Research Article

Abstract

The variation of constant method is employed to evaluate the periodic solution of a linear neutral system
with an input function. Uniqueness of the obtained solution is established and proved by utilizing the
inversion theory on a perturbed differential operator. The exponential stability of the system equation and
the computation of the maximum delay bound for the system to be asymptotically stable are analyzed
using the resolvent matrix of the system equation. The controllability of the system is studied by the
analyses of the linear ordinary control and the free control parts of the linear neutral system for
properness, non-singularity of the gramian matrix, canonical form of the controllable matrix and the non
zero/ pole cancellation of the transfer function matrix. Results obtained are employed on neutral delay
model of a partial element equivalent circuit (PEEC) consisting of a retarded mutual coupling between
the partial inductance to confirm the suitability of the test.
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1 Introduction

The qualitative properties of differential equation models in system theory are greatly improved by the
introduction of the delay (neutral) differential equation. This is because the point-wise (instantaneous)
reaction of the system for any perturbation is addressed. This important attribute has endeared the
application of the neutral differential equation in the formulation of mathematical models in many fields of
engineering and sciences (see: [1,2,3,4]).

Neutral differential equation is a delay equation with time lag »(¢):E —> E, r(#)>0 incorporated in both

the derivative and the state of the system. This time lag accounts for the non-instantaneous reaction of the
system for any action. A general non homogeneous neutral differential equation is defined as

n

A et x(t - ) = g () + (@), n=1, 2, ...
t (1.0)

where g(x(2)), 7(u(t)) are the state and the input function of the system respectively.

The analysis of equation (1.0) begins with the establishment of the conditions for the existence and
uniqueness of the system solution, which in most cases provides the methodological basis for computing the
system solution. Many mathematical concepts have been used by researchers to achieve this aim (see:
[3,5,6,7]). But in all the methods employed, the general idea is the establishment of boundeness and
continuity of the functional in the space of its operation. The establishments of the uniqueness of the system
solution also guaranties the analysis of the qualitative behavior of the solution for any perturbation of the
system equations such as; asymptotic stability, controllability and observability. But these analyses are not
easily come by, due to the transcendental character of the system equation. Considerable literature devoted
to the study of the asymptotic and exponential stability behavior of solution of equation (1.0) abounds in
[3,4,6,8,9,10]. Also, researches on the controllability are found in the works of ([1,11,12]).

The aim of this research work is to obtain a periodic solution of the linear neutral system of equation (1.0),
with a constant delay (» > 0) and an initial value x(#,) = ¢, by employing the variation of constant method.

The inversion concept of a perturbed differential operator which yields the sum of a contraction and a
compact map by Burton [5] is used as a tool in establishing the uniqueness of the periodic solution of the
system. The exponential stability of the system equation is established by the analysis of the system
resolvent matrix which must be negative definite. The resolvent matrix is also utilized to approximate the
maximum delay bound for the system to be asymptotically stable. The controllability of the system is study
by the analyses of the linear ordinary control and the free control parts of the system equations for;
properness, non-singularity of the gramian matrix, canonical form of the controllable matrix and the non
zero/ pole cancellation of the transfer function matrix. Application of the obtained results are employed on a
neutral delay model of a partial element equivalent circuit (PEEC) consisting of a retarded mutual coupling
between the partial inductance to confirm the suitability of the test.

2 Preliminary Results

Let Uc By([t-r,t],E), ECcR", where By is the Banach space of continuous functions and

and f < Cr.(U), such that f:ExU — R" is a continuous mapping which is T- periodic in £ and compact

in U , then a first order time invariant neutral delay equation is defined as
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X(0)+3(t ~r) = f(t,, Ax(t) + Du(t)) 2.0)

where A and Dare nxn and nx1 matrices respectively, and 7" > 0 is the time lag.

The T-periodic solution is a vector function x:[¢ - r,/]— E, which is dependence on the time lag” > 0 and
the T -period in £ such that

x(t+T)=x(0) oy frr =/,

Considering the initial value linear system of (2.0) in the form

% (x(1) = x(t = r)) = Ax(t)+ Du(r)
x(ty) = X, 2.1

with an output function y(¢) = Cx(¢z) . By employing variation of constant method, (2.1) is expressed as

ree —Ar g _ ! —Ar
x(r)e “fdr=xy+ | Du(r)e ""dr
t—r t

2.2)
Since the solution vector function x :[t —r,t]— E is T-periodic, then (2.2) is equivalent to
re —-At =T —-At ! —-At
I x(r)e “fdr=xy+ J' x(t)e “"dr+ | Du(r)e"‘dr
-T t—r l
Integrating by part the term on the left and second term on the right yield
!
x(t)e ' —x(t—=T)e 4D 4 AI x(v)e dr =
=
! !
xo —x(t=T)e D _x(t—r)e 1) & AI x(r)e "dr+ | Du(r)e’*dz,
t-T t
t t—T t
x(t) = xge™ +x(t—r)e ) 1+ 4 I x(0)e A dr +I x(0)e A dr ]+J. Du(r)e "4z
t-T t—r to
Re-arranging the above equation, the integral solution
t t
x()=xpe +x(t -1 v Al x(0)edr+ | Du(r)e " dr
t-r ty 2.3)

is obtained.
3 Uniqueness of Solution (2.3)

The development of theory on uniqueness of solution (2.3) is enhanced by the utilization of some known
results on the behavior of f on By stated as follows:
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3.1 The Krasnoselskii Hypothesis

Krasnoselskii [13], states that the inversion of a perturbed differential operator yields the sum of a
contraction and a compact map. This hypothesis is essential tool in the analysis of existence and uniqueness
of solutions of the neutral differential equations as shown in [14,15]. The theorem combines the Banach
contraction mapping principle and the Schauder fixed point theorem to establish bound conditions and

convergent point in the non-empty closed convex subset of By . Burton [5] presents a modified form of the
Krasnoselskii hypothesis as follows;

Theorem 3.1

Let X c By be a close convex non empty subset, assume that 9 and R map X into Bj such that
O,R: X — X , then

i. for x,x,eX, Ox+Rx, eX
ii. R isa contraction with contraction constant 0 < k <1,
iii. Qis continuous and Q(X) is contained in a compact set,

then there exists a unique xe X such that Ox; + Rx, =x .
Definitions 3.1

1. (X,f)beametric spaceand R: X — X . R is a contraction such that for ¢, 4 € X and ¢ =4, then
(R, RY) <l(@,P) and for &> 0, thereexists 0<k <1

o, 9 X, U, §) = ¢ implies that ((Rp, RP) <kl f(p,P)

such that

2. X < By is a convex non empty subset with ¢, g X , then X is a closed segment with
boundary points P ¢ such that d= {V €Bylv=ke+(1-k)¢:0< ksl}c X .
3. X cBy be a closed convex non empty subset and «: X — X isacompactsetin X if p(r)e X

71

. ag; |; .
there exist subsequent ¢(¢,,), such that [ ¢ ]’=0 converges in X

3.2 Mean value theorem

Theorem 3.2

Driver [16], states that if f(x) is continuous and differentiable on the interval[a,b] , then there exists at

least a number ¢ € [a, b]such that
F) - f(@) = £ @b -a) 0
3.3 Main Result

Theorem 3.3

Consider the general form of system (2.1) in the form of (1.0) as

L p(x(0). (0= 1) = £ (0.0,
[ , (3.1
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where Fx(®),u(t),t)=g(x(@)+nw(?)) is continuous and differential on
I= [to —aststyra, pltg) - fp<oltg)+f ] , Lipschitzian in the t variable, and for constants
ky,ky, >0, ||g(x(t))|| <k, ||77(u(t))|| <k, , then for any continuous initial value ¢ :[t — h,t] > E there exists a

compact continuous periodic function f;(¢(?)) € X < By which maps X to itself so that

Sy =pe" + 000+ 4[] g (@@ de+ [ ppu(@)e e,

defined the unique T-periodic solution of (3.1)
Proof
The hypotheses of the theorem are proved in steps as follows:
Step (i); showing that f(x(¢),u(t),) is Lipschitzian.
Assume?,t, €[t —r,t], then
|/ Gy, ue,),8,)) = et )y, 0))] = [l et ) = (e, )] = [g (ot ) = )]
<| g (x(t,)) ~ g et )] + [rr(u(e, ) — m(u(e))|

By the mean value theorem,

[g(x(t.)) - gxt, )] = &' (@)t -1,

<lt, = 1,,
and
(2, ) = ()| < 7' ()t — 1)
<lt, =1, for t, <c<t,.
Therefore

Hf(x(tz)au(tZ)ﬂtz))_f(x(tl)au(tl)ﬂtl)ﬂ‘ Ssuﬁtz _tl‘ +Suﬁt2 _tl‘
<k +hy) plty )
=Mp(t,.t)),

and hence f(x(¢),u(),t) is Lipschitzian with Lipschitz constant A7 > 0.

Step (ii):
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Consider the bounded closed rectangle

T" =1t p(s)ity —r <5 <t, 9(ty) = B < p(s) < (ty) + B, for 0< <1}

such that 0 < Sk <1 is satisfied. Also let [ = [to -7, t] be a set, and U(/) = X defined the space of all
continuous functions @(s) such that

Jeo(s) = (2] < ok,
Then [ is a continuous closed bounded subset of X and U(/) = X is compact

Step (iii):

Using the hypothesis of Krasnoselskii as stated in [5], assume O, R: X — X , where Qis a contraction and
R is continuous with the map R X residing in a compact set / , then

A(t—r ¢ (s " s
[r@0) = e + 0,00 N+ A[ g (p(@)e " )dr+ [ 1y (u(z)e " )dz
can be express as sum of a contraction and a compact map. That is

S+ (@) = 0p()+ Rp()
with
O(p(1) =gy + [ (u()e " )dr

and

R(p(t)) = ¢,()e ")+ Af_, g, (0(0)e " )dr

Step (iv):

X< BH. Consider the set U (I) cX

R(/J(s)eX,se[tO—r, t]

Showing that Ro() is compact in as defined in step (iii) with

metric ¢ on C[If ], then for
[Re(s) e, < B

Also for any continuous functions o), oty) € X, for 1.1, € [to B r,t]’ then
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((Ro(t,), Ro(t,)) = sup|Rep(1,) —Ro(t,)|
< Bsup|p(t,) —o(t,)|
< Sk,

Thus, R¢(¢)is compact.
Step v:
Showing that Qg(¢) map to itself

Consider any solution ¢(t)e X c By and let O be a map defined as Q:¢(f) > ¢(¢t) such that
Qo(t) = p(1) , where

PO=9,+ [ n@@e )z, for g,=gli)e"

Then

o)== [, n (e ar

: J';_r ||77T (u(r)e )

< Jt:_rkzdr A (A

|dT

<k,a.

Showing that Q@(f)=@(f) is a contraction: Assume for any arbitrary ¢(t,) ,@(t)) € X ¢ By with
Q(p(tl) = (p(tl), Q(O(t2) = (p(t2) , and for a metric ¢ on C[I,-], then

UQp(t,), Q1)) =UA1,), (1))

—A(1-7)

(@, + j 1y (u(@)e ™ )dr) ~ (g, + f e )dr)

i

=sup

—A(t,-7)

(17, (u(2)e™" ) = (17, (u(7)e )

t
Ssup'[ r‘
-

< sup .[:7,. sup"ih2 (@) =y, (T)"dr
<k, sup .[t L dr

<k, sup|t -, - r)|

=k,a.
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Thus, for f7(p(t)) satisfying conditions i —iv, then

Sy =g + 900+ 4[] g (p@)e " d+ [ pp (e e,

is the unique T-periodic solution of (3.1).
4 Exponential Asymptotic Stability

Considering the Laplace transform of (2.1) as

T e R e o

, 4.0)
such that
-1 —sr -1 —sr -1 —sr
x(t)=1L (s—se —A) x(0)+(s—se —A) De @.1)
with resolvent matrix
—sr -1
(s—se —A) s (4.2)
and state transition matrix
_ o -1
p(t)=L 1((s—se —A) ) (4.3)

which mapped the initial state x(0) to the state at time ! and therefore defined the complementary solution

x(2) = p(£)x(0) . (4.4)
By the definition of equation (4.3), the stability of system (2.1) largely depends on the resolvent matrix.
Definition 4.1

A matrix 4 eE™" is called a Metzler matrix if all off-diagonal elements of — 4~' are nonnegative (Ngoc,

[10]).

Properties of Metzler matrix (Ngoc, [10]):

Suppose 4 e E™" is a Metzler matrix,

i.  Then s(4) defined the eigenvalue of A
il. There exists a non-negative eigenvector x # 0 such that Ax =s(A4)x.

s(4) >0

iii. Givenany 0 € R, there exists a nonzero vector x > 0 such that Ax>0x if and only if
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Definitions 4.2

i.  System (2.1) is exponentially stable if for any initial value x(0) = ¢, "(o(t)—(po" <g, for q)(t)

defined in equation (4.3)
ii. The zero solution of system (2.1) is exponentially asymptotically stable if for any initial value
x(0) =@y, lim @(t)x(0)=0, for ¢(¢) defined as in equation (4.3)
11—

iii. If the zero solution of (2.1) is exponentially asymptotically stable, then the system solution x(¢) of
equation (4.1) is exponentially asymptotically stable

4.1 Stability Result

Theorem 4.1

nxn

Suppose 4 e E™" is a Metzler matrix with "s] —A" #0, such that the resolvent matrix in equation (4.2) is

negative, then the zero solution of system (2.1) is exponentially asymptotically stable.

Proof

By the properties of Metzler matrix, if — 4™ >0, then the geometric spectrum of A s the set

S ax :{seE, 0<s<0, such that |SI—A|¢0}

. 4.5
Considering the resolvent matrix of equation (4.2), for any & eR, such that &7, =s(/ —e™™), then
(s —se™ — A)f1 =&, -4
T\ . (4.6)
By Crammer’s rule, i j entries of equation (4.2)is written as
(—l)i/ detAg’j _ f,/(‘f) _P(é:)
det(gl —4) X (S) , (4.7)

where f;(&) is a polynomial of degree less than 1 By implication P(&) defined the poles of equation (4.6),

and so

P(é:) = Smax , (48)

-1
And therefore (gl” B A) is stable.

Also by the binomial theorem;

-1 1 A -1
— A = () -=
(& - 4) (g)( 6g)

s
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o(t) =L‘1((§I—A)’l)=1+tA+ %4— %4—

At
=e .

By the definition (4.1) of the Metzler matrix and the approximations,,, =P(¢) , the resolvent matrix is
negative definite, and

limg(t) = lime™ =0

t—0 t—wo .
Then the zero solution of system (2,1)is exponentially asymptotically stable, which implies exponential
asymptotical stability of system (2.1).

4.2 Computation of the Delay bounds

In this section, results on the computation of the delay bounds of the system equations to be exponentially
stable are presented. Chiasson [17] stated that the asymptotic stability of (2.1) is within certain range of the
delay values. The Extension of [17], and utilizing the stability theory of section (4.2) (as largely dependent
on the state transition matrix), the resolvent matrix is thus used as an approximating tool for evaluation of
eigenvalues and the corresponding delay bounds for system (2.1) to be asymptotically stable. Hence

P(5,5(s5)) = (s —s6—A)7", (4.9)

—Sr
which is a two variable polynomial with bo=e . The auxiliary polynomial of equation (4.9) is

P(s,5(s))=— 5'”13@,%), m = deg{P(s,5))

Definition4.3 (Chiasson, [17])

Let {(si,éi),izl,...,k} be the common zeros of {P(sﬁ), P(s,§)} for which Re(s;)<0, s; #0 and

|6,/=1, &, #1. Then, for each such pairs (5,s;), " =min,., {reiﬁ’/ﬁi =e"”'} defines the minimum

bound of 7

5 Controllability Result

The aim of this section is to develop theorems on the null controllability of system (2.0) for any initial
condition ¢(¢,) = ¢, , given a control functionu(f), by using the linear ordinary control system and the free

control system of (2.1) . Hence Hermes and LaSalle [18] defined the associated linear ordinary control
system of (2.0) as

).c(t) = Ag(t,x(¢))+ Du(r)
x(ty) = @g» (5.1

and its corresponding integral trajectory as

10
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T
Sr(t.ty, @p,u) =¢OeA' + J.DeA('_T)u(T)dT

ty

The condition for properness of (5.1) as stated in [18] is that, if the free system of (2.0) written as

di L(t.x,(1)) = Ag(t,x(0)),
t (5.2)

for L(t,x,(¢))=x(t)— p(t,x(t—r)), is uniformly asymptotically stable, then system (2.0) is null
controllable.

Definition 5.1

ii.

iii.

Proper system: The system (5.1) is said to be proper on [to,tl] if for any vector xe E™! , there

exists a linear span of De™* defined as <x,De ™" >=0, re [to,tl] , almost everywhere, an
rank[D:AD:A’D ...: A"'D]=n_

Complete controllability: The system (5.1) is completely controllable on [to,tl] if for any initial
function ¢(¢,) = ¢, , there exists a control (input) functionu(¢) € E ™1 " which is compact and can
transfer the function to another state ¢(¢;) = ¢, in a finite time ¢,.

Null controllability: System (5.1) is null controllable on [to,tl], if for any# >t,, there is an

admissible control function u(:):[ty,t;]—> E »1 that transfer the periodic solution
fT(t09¢OsuaT) =Xp to fT(tls(DIsuaT) =X =0 5 for Te[tostl]’

iv. Reachable set: The state of the systemx, € E”, is reachable on [¢,,7,] if the exists an input
function u("):[ty,t,] — E™" that transfer (x,,,) to (xl’tl). The reachable set R, < E" is the set
of points reachable in ! seconds such that

8
R = jleA(t‘{)Du(r)dz'
‘o ) (5.3)
Lemma 5.1

If the corresponding input trajectories of the linear control system of (5.1) takes values in the lager Hilbert

space of integrable functions, such that u(-):[¢y,t;] > E ™1 for t, >, then asymptotically proper system is

controllable.

Proof:

Assume system (5.1) is asymptotically proper, using the result of [18], the integral trajectory of the linear
ordinary control system is

so that

|
@™ + J.DeA(’1 “u(r)dr =0,

Iy

11
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Ul
® = J.De””u(r)dr.

to
Then, by definition (5.0-i), there exists a vector matrix x € E" that span De~ ) sych that,
! *
IxT De "u(r)dr =0,

)

and

xT‘DefATu(T) =0, (5.4)

hold almost everywhere.
By the properness assumption of lemma (5.1), if u(z) e(L([tO,tl],E”XI),< -,->), then equation (5.4) is
satisfied if and only

T —At
<x",De ™ >=0. (5.5)

Defining

7()=<x,De” " >=0,

so that
n—-1
— 7(1)=x"[(4)* De™""]=0, for k=0,1,2....(n-1)
t ) (5.6)
Evaluating equation (5.6) at t=0, for k=0,1,2,..n -1 , the controllability matrix is obtained as
_ . . 2. 3p. . n=1
®=[D: AD: A’D: A’D: ...: 4"”'D] 57)

Algebraically, system (5.6) has a solution if <X0> has n-linearly independent vector, hence

rank[D: AD: A*D: A’D:.... A"'D]=n
This implies controllability of system (2.1), hence the hypothesis of the Lemma (5.0) holds.

Definition 5.2

1 The reachability map on [#,,#,] of the pair of matrices (A4(:), B(-)) is the function

12
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R,:L([ty,4,],E") > E"

4]
u — J.eA(t‘fr)Du (r)dr. (5.8)

to

2 Adjoint of a linear map: Let (U, F,<-,->)and (V,F,<-,->) be Hilbert spaces and H :U — V isa
continuous linear map, the adjoint of H is the linear map H " :V — U defined by

<v,Du>=<D"v,u>,forall ueU,veV .

3 Self Adjoint: Let (U,F,<-->) and H:U — U be linear and continuous, H 1is called a self
adjoint if and only if H# = H ™, such that forv,u e U <v,D(u)>=<D(v),u >.

Therefore for the reachable set R, of (5.3), assume et p= G(t), t €[ty,t;],and x eV, then

4y
<x,R, >=<x,G()u>=x" JG(t)u(t)dt

Lo
4y

= I xTG (t)u(t)dt

Lo

- J' (G (t)x) u(t)at

Lo

- j G (1) xu (t)dr

<G ((t)yx,u >

-
=< R, ,x>.

Hence the linear map of the adjoint R,” is defined

*

R E" —  L([ty,4],E™)
|
Aty ~7)
J‘e Du(r)dr. > u. (5.9)
ty
Lemma 5.2
The linear mapping R,0R,":E" — E" between two finite dimensional spaces admit a matrix

representation known as the controllability gramian matrix

]
W(ZO’ZI)ZJ.QA(ZI—T)DDT (eA(tl—r))T dre E™"

)

Proof:

13
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Using equation (5.9), with definition (5.2), it is shown that < x,R, >=< Rt*,x >, and

f
R u—> _[ (e ")\ Du(z)dr

to
Let [R,(x)](r)=e"""" Dx, then

4
[RoR1(x)=| [e*@=7DDT (") dz |x
l

=W(ty.4)x,
where W (t,,t)is the gramian matrix.
Theorem 5.1 (Main Result IIT)

Let L:JxE"xE™ — E" be well defined such that L(z,x,(¢)) = x(t) — p(¢,x(t —r)), and system (2.1) is
equivalent to

%L(l, x,)=Ax(t) + Du(t)
x(0) =g,

such that y(t)= Cx(t), (5.10)

with a transfer function defined as C [s] —se " — A]71 D . Then system (2.1) is null controllable if
]
i.  The gramian matrix W (¢,,t,) = IeA(’_T)DDTeA(’_T)T dr , is nonsingular,
fy
ii.  System (5.10) is asymptotically proper,
— . . .ogyn=l
iii. The controllable matrix © = [D:A4D: ... A7 D]
iv. The transfer function has no zero/ pole cancellation.

has a canonical form,

Proof:
Consider the gramian matrix

¢ T
Wtgot) = [ DT e
)

>

T
D =(dy) and D" =(by) b, =d

such that matrices 7 7 ™Ji Then

|D|= Z(sgn 0)d 51 d252) - - s ()
€S,

14
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and

‘DT‘: Z(Sg“ Nbisaybrs(2) - - businy

€S,
= Z(sgn 0)dsay ds2y2 -+ Ay
oeS,
_ a
= z (5gn0™ ), 511y dy512) By
5eS,

L, if O iseven

.Let $=0"" be th
1 ifdisodd e e

where S, is the set of permutation, 0 is the permutation and Sgnéz{

inverse permutation of 0 ,and also sgnd~' =sgnd, therefore sgn o' =sgn 9 =sgnd. Hence,

7| _ -1
|D |‘Z(Sgna ), 510 Doty sy
€S,

= Z(sgn 'g)dlti(l) dzs(z) . 'dnfi(n)

JeS,

= |p}
Therefore by the definition of the gramian matrix,
Ul

t T 2
W(ty,ty) = I ' A40=0) ppT A7) dr:.[ eA(H)D“ dr>0
fo o ) (5.11)

Since D is nonsingular by its properties, then

Wi(ty,t) =0

and hypothesis (i) of the theorem is proved. Also by lemma (5.0) hypothesis (ii) is satisfied.

— . .. .ogyn=l
Proving (iii) using (ii); assume the controllable matrix o=[D:AD:: ... A7 D] has Ci invariant
cyclic subspace decomposition, with distinct eigenvalues, and then @ is diagonalizable with diagonal
matrix

w 0. 0

0 C, ...0
o= : ,

0 .C,

k

ker(w —

Cm Sy ) .. . @ ;
where + defined the . Then, the characteristic polynomial of ¢ is,

o) =my(t) + my(t)+ .. .m(2),

(my(¢) is monic), and the minimal polynomial is,

15
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my () = @ —s)™ + (E—s)" +...(t—s)™ .

~
Hence, the direct sum decomposition of ~ is

o =ker(w—s5)" @ ker(w—15,)",®...0(@w—s5,)"
—C,®C,®...0C,

where C, defined the companion matrix. Defining a nilpotent operator N” =0, for ne Z*, with a minimum

m, (1) = (t=0)" =1

k
polynomial of index k written as (clearly has eigenvalue zero), so that C, can be

express in terms of the nilpotent matrix as Ce=sply + N (] is an 7' ¥k identity matrix, N, nilpotent
block) and the canonical form of the controllable matrix @ is thus

0= 51, +N® 5,0, + N®...® s, 1, +N (5.12)

Proving (iv); using the transform of equation (4.0) stated as

X(s)= (s —se " — A)_lx(O) + (s —se V" — A)_lDefs"

s

such that

0= L_l((s —se - Aylx(o) + (S —se”¥ — ATIDe_Sr)

>

and the output function

H)= L_I(C(S —se” - A)_lx(o) +C (S —se — ATIDeJr)

(5.13)
Then, there exists a mapping of the control function to the reacheable set defined as
3:L([0,¢],E") - E"
u -y,
For
S () =(sl—e™ - A7'De . (5.14)

~

The function 3, (s) is the system transfer function of (5.10).

Algebraically, (5.14) is expressed as

3, (S):@ =K (Sl _Zl)- .. (S[ _Zi)
yu a(S) (Sl _pl)‘ .. (Si —pl.) ’

16
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(p;) (z) a(s) and b(s)

Z;

where poles and zeros are the roots of respectively. Assume = Pis then

lim 3~

Zi—=Pi

which contradict the concept of controllability . Therefore z; # p, (implies no zeros/poles cancellation).
6 Illustration

Consider the neutral delay model of a partial element equivalent circuit (PEEC) which includes new circuit

L, (t—7r)

element consisting of a retarded mutual coupling between the partial inductance of the form , but

without retarded current sources of the form

d2

d? d
el o) - e ot —r)+a p O(t) +a,0(t) = Du(?)

0(ty) =0 (6.1)

with an output function ¥ (1) =CO() .

This is reduced to a first order system of the form

%(Q(t) — Ot~ ) = AQ() + Dul),
Q(to) = QOa
and J’(t) = CQ(fo) (6.2)

0 1 0
where A= , D= , C=(c; ¢;).
-4 —a4 dy

6.1 Exponential Stability Analysis of system (6.2):

a? - -1
By theorem (4.1), 4 is a stable Metzler matrix ( s(4)<0 ), if 2 >yay —4a such that =4~ >0 Also, by
the definition of the resolvent matrix

P(s,8(s) = (I(s—se")—4)
=52 (1-26+6%)+a,s(6 —1) +a,

I m 1
P(s,0(s))=—0 P(s,%)

=—5*(1-26+6%)—ays(6* - 8) —ay,

where ™ is the highest degree of o in P(s,d(s)) s 52@7”. Solving P(s,8(s)) and P(s,5(s))

simultaneously to obtained

17



Igobi and Atsu; JAMCS, 26(5): 1-20, 2018; Article no. JAMCS.22826

a - (alaz2 - 2a12) + \/(alag - 25112)2 - 4“12 92a§ + al2 - alag)
s=——and 0=

a, 2a12

>

6,|=1, 6, =1 . . .
such that Re(s;) <0, s; #0 and are satisfied, then the system is asymptotically stable .

Also, for each such pairs of(gi’si) s ro=m ., {r € iR/é"’ =e }

T;

defines the minimum delay

bounds of "7 for system (4.2) to be asymptotically stable.

6.2 Controllability Analysis of System (6.2) on [to’tl], with an Initial Function

Q) =9 Control (input) Function 2*(®) € £ " and Output Function ) =20
is as Follows:

1 By the proved of hypothesis ( i) of theorem (5.1), the gramian matrix
]

1
W(ty.t) = J.eA("’)DDTeA('*’)TdT = J’eA(H)Ddr,

l )

and
0 1 M g 1
expA(t—7) = exp[ J(l —7) =[v,] 2 (t—7) o]
—a; —a 0 em\'"
so that

Ay (1=7) 0

4
W(ty.t) = I[V1V2 ][e }[vlvz]lDdr #0,
0
ty

eiz (t-7)

A A

where YV1°V2 are the corresponding eigenvectors of the eigenvalues 2 of matrix 4 , and hence

W(t.1))

is nonsingular.

2 Analysis of hypothesis (ii) of theorem (5.1) for properness property ;

A: N D: , AD:
-a, —a, d —a,d

and

0 d
rank[D: AD] = rank|
d —a,d

d —a,d .
=ran 0 4 =2 (byelementary rows operation).

Hence [D: AD: .... A""'D] is proper with rank 2.

3 Analysis of hypothesis (iii) of theorem (5.1) for the canonical form of controllable matrix

0o d Aand D .
1S

a):[D:AD]:(d ad
—a

] for the appropriate choice of matrices

w= 3851, +N,® s,I, + N,

18
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S

where 2 are the characteristic roots of the controllable matrix.

4 Analysis of hypothesis (iv) of theorem (5.1) for the transfer function;

( s—s0—a, 1 0
O a e —-a s—so\d
C(s—s&—A) D=

C S2(1-26+8) +as(5 -1 +q

0
(cl(s—sé'—az)—czal 1) +cz(s—s5){dJ

2 (1-25+6H) +as(5-1) +q
B (c; +cy(s—s9))d
s2(1-26+8H)+as(5—-1)+a,

which has no zero/pole cancellation?

A, D, and C

Hence by analysis 1 — 4, and for the appropriate choice of matrices , system (6.2) is

controllable.

7 Conclusion

The periodic solution of a linear neutral system with an input function and initial value was obtained by
employing the variation of constant method. Theory on uniqueness of the obtained solution was established
and proved by utilizing Burton [5] inversion theory of a perturbed differential operator which yields the sum
of a contraction and a compact map. The resolvent matrix of the system equation (which must be negative
definite) was used as a tool to analyze the exponential stability of the system equation and the computation
of the maximum value of the delay bounds for the system to be asymptotically stable. The controllability of
the system was studied by the analyses of the linear ordinary control and the free control parts of the linear
neutral system:- for properness, non-singularity of the gramian matrix, canonical form of the controllable
matrix and the non zero/ pole cancellation of the transfer function matrix. Results obtained were employed
on neutral delay model of a partial element equivalent circuit (PEEC) consisting of a retarded mutual
coupling between the partial inductance which confirmed the suitability of the test.
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