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Abstract 
 

The variation of constant method is employed to evaluate the   periodic solution of a linear neutral system 
with an input function. Uniqueness of the obtained solution is established and proved by utilizing the 
inversion theory on a perturbed differential operator. The exponential stability of the system equation and 
the computation of the maximum delay bound for the system to be asymptotically stable are analyzed 
using the resolvent matrix of the system equation. The controllability of the system is studied by the 
analyses of the linear ordinary control and the free control parts of the linear neutral system for 
properness, non-singularity of the gramian matrix, canonical form of the controllable matrix and the non 
zero/ pole cancellation of the transfer function matrix. Results obtained are employed on neutral delay 
model of a partial element equivalent circuit (PEEC) consisting of a retarded mutual coupling between 
the partial inductance to confirm the suitability of the test. 
 

 

Short Research Article 
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1 Introduction 
 
The qualitative properties of differential equation models in system theory are greatly improved by the 
introduction of the delay (neutral) differential equation. This is because the point-wise (instantaneous) 
reaction of the system for any perturbation is addressed. This important attribute has endeared the 
application of the neutral differential equation in the formulation of mathematical models in many fields of 
engineering and sciences (see: [1,2,3,4]). 
 

Neutral differential equation is a delay equation with time lag EEtr :)( , 
0)( tr

 incorporated in both 

the derivative and the state of the system. This time lag accounts for the non-instantaneous reaction of the 
system for any action. A general non homogeneous neutral differential equation is defined as 
 

.,..,2,1)),(())(())(),((  ntutxgrtxtx
dt

d
n

n


           (1.0) 

 
where ))(()),(( tutxg  are the state and the input function of the system respectively.   

 
The analysis of equation (1.0) begins with the establishment of the conditions for the existence and 
uniqueness of the system solution, which in most cases provides the methodological basis for computing the 
system solution. Many mathematical concepts have been used by researchers to achieve this aim (see: 
[3,5,6,7]). But in all the methods employed, the general idea is the establishment of boundeness and 
continuity of the functional in the space of its operation. The establishments of the uniqueness of the system 
solution also guaranties the analysis of the qualitative behavior of the solution for any perturbation of the 
system equations such as; asymptotic stability, controllability and observability. But these analyses are not 
easily come by, due to the transcendental character of the system equation. Considerable literature devoted 
to the study of the asymptotic and exponential stability behavior of solution of equation (1.0) abounds in 
[3,4,6,8,9,10]. Also, researches on the controllability are found in the works of ([1,11,12]). 
 
The aim of this research work is to obtain a periodic solution of the linear neutral system of equation (1.0), 

with a constant delay )0( r  and an initial value 00 )( tx  by employing the variation of constant method. 

The inversion concept of a perturbed differential operator which yields the sum of a contraction and a 
compact map by Burton [5] is used as a tool in establishing the uniqueness of the periodic solution of the 
system. The exponential stability of the system equation is established by the analysis of the system 
resolvent matrix which must be negative definite. The resolvent matrix is also utilized to approximate the 
maximum delay bound for the system to be asymptotically stable. The controllability of the system is study 
by the analyses of the linear ordinary control and the free control parts of the system equations for; 
properness, non-singularity of the gramian matrix, canonical form of the controllable matrix and the non 
zero/ pole cancellation of the transfer function matrix. Application of the obtained results are employed on a 
neutral delay model of a partial element equivalent circuit (PEEC) consisting of a retarded mutual coupling 
between the partial inductance to confirm the suitability of the test. 
 

2 Preliminary Results 
 

Let ,),],,([ n
H REEtrtBU  where HB is the Banach space of continuous functions and 

),(1 UCfand T  such  that nRUEf :  is a continuous mapping which is T- periodic in E and compact 

in U , then a first order time invariant neutral delay equation is defined as  
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))()(,,()()( tDutAxtfrtxtx 


,                                         (2.0) 
 

where DandA are 1 nandnn  matrices respectively, and 0r is the time lag. 

 

The T-periodic solution is a vector function Etrtx  ],[: , which is dependence on the time lag 0r and 

the T -period in E  such that  
 

)()( txTtx 
 and tTt ff  . 

 
Considering the initial value linear system of (2.0) in the form 
 

 

,)(

)()()()(

00 xtx

tDutAxrtxtx
dt

d





                                          (2.1) 
 
with an output function )()( tCxty  . By employing variation of constant method, (2.1) is expressed as 

 










t

t

A
t

rt

A deDuxdex
0

)()( 0  

.                                         (2.2) 
 
Since the solution vector function Etrtx  ],[:  is T-periodic, then (2.2) is equivalent to 

 

















t

t

A
Tt

rt

A
t

Tt

A deDudexxdex
0

)()()( 0  

. 
 
Integrating by part the term on the left and second term on the right yield  
 

  .)()()()()(

,)()()()(

)()()(

0

0

)()()()(
0

)()(
0

)(















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






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
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t

t

tA
Tt
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tA
t

Tt

tArtAAt

t

t

A
t

Tt
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t

Tt

ATtAAt

deDudexdexAertxextx

deDudexAertxeTtxx

dexAeTtxetx













 
 
Re-arranging the above equation, the integral solution  
 






 
t

t

tA
t

rt

tArtAAt deDudexAertxextx
0

)()()(
0 )()()()(  

                        (2.3)  
 

is obtained. 
 

3 Uniqueness of Solution (2.3) 
 
The development of theory on uniqueness of solution (2.3) is enhanced by the utilization of some known 

results on the behavior of HBonf  stated as follows: 
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3.1 The Krasnoselskii Hypothesis 
 
Krasnoselskii [13], states that the inversion of a perturbed differential operator yields the sum of a 
contraction and a compact map. This hypothesis is essential tool in the analysis of existence and uniqueness 
of solutions of the neutral differential equations as shown in [14,15]. The theorem combines the Banach 
contraction mapping principle and the Schauder fixed point theorem to establish bound conditions and 

convergent point in the non-empty closed convex subset of HB . Burton [5] presents a modified form of the 
Krasnoselskii hypothesis as follows;   
 

Theorem 3.1 
 

Let HBX   be a close convex non empty subset, assume that Q  and R  map X  into HB such that 

XXRQ :, , then 
 

i. for Xxx 21, , XRxQx  21  

ii. R is a contraction with contraction constant 10  k , 

iii. Q is continuous and )( XQ is contained in a compact set,  

 

then there exists a unique Xx such that xRxQx  21 . 

 

Definitions 3.1  
 

1. ),( X be a metric space and XXR : . R  is a contraction such that for X , and   , then 

),(),(   RR and for 
10,0  kexiststhere

 such that 

),(),(),(,,  fkRRthatimpliesX    

2. HBX  is a convex non empty subset with X ,  , then X  is a closed segment with 

boundary points 
,

 such that   XkkkvBH  10;)1(/  . 

3. HBX  be a closed convex non empty subset and XX :  is a compact set in X  if Xt )(  

there exist subsequent ),( nt such that  
 nii 0

  converges in X  
 

3.2 Mean value theorem 
 

Theorem 3.2  
 

Driver [16], states that if )(xf  is continuous and differentiable on the interval  ba,  , then there exists at 

least a number  bac , such that 
 

))(()()( ' abcfafbf  .                                          (3.0) 
 

3.3 Main Result 
 

Theorem 3.3  
 

Consider the general form of system (2.1) in the form of (1.0) as 
 

)),(),(())(),(( ttutxfrtxtx
dt

d


,                                         (3.1) 
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where ))(())(()),(),(( tutxgttutxf  is continuous and differential on 

   )()(, 0000 ttttt , Lipschitzian in the t  variable, and for constants

2121 ))((,))((,0, ktuktxgkk   , then for any continuous initial value Etht  ],[:  there exists a 

compact continuous periodic function HT BXtf ))((  which maps X to itself so that   

 

,))(())(())())((
0

)()()(
0 





 
t

t

tA
T

t

rt

tA
T

rtA
t

At
T deudegAetetf  

 
 

defined the unique T-periodic solution  of (3.1) 

 

Proof 

 
The hypotheses of the theorem are proved in steps as follows: 

 

Step (i); showing that )),(),(( ttutxf is Lipschitzian. 

 

Assume ],[, 21 trttt  , then 

 

   
))(()))(())(())((

))(())(())(())(())),(),(())),(),((

1212

1122111222

tututxgtxg

tutxgtutxgttutxfttutxf









 
 

By the mean value theorem, 

 

 
,

)('))(())((

21

1212

tt

ttcgtxgtxg





 
and 

.,

)('))(()))((

2112

1212

tctfortt

ttctutu



 

 
 

Therefore  
  
 

),,(

),()(

supsup))),(),(())),(),((

12

1221

1212111222

ttM

ttkk

ttttttutxfttutxf











 
 

and hence )),(),(( ttutxf is Lipschitzian with Lipschitz constant 0M . 

 

Step (ii):  
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Consider the bounded closed rectangle 

 

 
 10,)()()(,);(, 000   fortsttsrtst

 
 

such that 10 1  k  is satisfied. Also let  trtI ,0   be a set, and XI )( defined the space of all 

continuous functions )(s such that 

 

10 )()( kts  
. 

 

Then I is a continuous closed bounded subset of X  and XI )( is compact 

 

Step (iii): 
 

Using the hypothesis of Krasnoselskii as stated in [5], assume XXRQ :, , where Q is a contraction and 

R is continuous with the map XR residing in a compact set I , then  

 

 






 
t

t

tA
T

t

rt

tA
T

rtA
t

At
T deudegAetetf

0

))(())(())())(( )()()(
0  

 
 

can be express as sum of a contraction and a compact map. That is 

 

)()())(( tRtQtfT   , 

 

with  

 




t

t

tA
T

At deuetQ
0

))(())(( )(
0  

 
 

and 

 

 
 

t

rt

tA
T

rtA
t degAettR   ))(())())(( )()(

. 

 

Step (iv):  

 

Showing that 
)(tR

is compact in HBX  . Consider the set 
XI )(

 as defined in step (iii) with 

metric   on 
 iIC

, then  for
 trtsXsR ,,)( 0 

  

 

  )()( 0tsR
. 

 

Also for any continuous functions 
 trtttforXtt ,,,)(),( 02121 

, then 
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1

12

1212

)()(sup

)()(sup))(),((

k

tt

tRtRtRtR













. 
 

Thus, )(tR is compact. 

 
Step v: 
 

Showing that )(tQ map to itself 

 

Consider any solution HBXt )(  and let Q  be a map defined as )()(: ttQ    such that 

)()( ttQ   , where 
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Then  
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Showing that )()( ttQ    is a contraction:  Assume for any arbitrary HBXtt )(,)( 12   with 

)()( 11 ttQ   , )()( 22 ttQ   , and for a metric    on  iIC , then 

 

))(),(())(),(( 1212 tttQtQ      
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Thus, for ))(( tfT   satisfying conditions i – iv, then   

 

,))(())(())())((
0

)()()(
0 





 
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tA
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t
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tA
T

rtA
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T deudegAetetf  

 
 
is the unique T-periodic solution  of (3.1). 
 

4 Exponential Asymptotic Stability 
 
 Considering the Laplace transform of (2.1) as  
 

    srsrsr DeAsesxAsessX  
11

)0()( ,                                                    (4.0) 
 
such that  

      ,)0()(
111 srsrsr DeAsesxAsesLtx                                              (4.1) 

 
with resolvent matrix 
 

  ,
1  Ases sr

                                                                                                                      (4.2) 
 
and state transition matrix 
 

  11)(
  AsesLt sr ,                                                                                                   (4.3) 

 

which mapped the initial state )0(x to the state at time t  and therefore defined the complementary solution 

 

)0()()( xttx 
.                                                        (4.4) 

 
By the definition of equation (4.3), the stability of system (2.1) largely depends on the resolvent matrix. 
 
Definition 4.1 
 

A matrix nnEA   is called a Metzler matrix if all off-diagonal elements of 1 A  are nonnegative (Ngoc, 

[10]).  
 
Properties of Metzler matrix (Ngoc, [10]): 
 

Suppose nnEA  is a Metzler matrix, 

 

i.  Then  )(As  defined the eigenvalue of A   

ii. There exists a non-negative eigenvector 0x  such that xAsAx )( .  

iii. Given any  , there exists a nonzero vector 0x such that xAx   if and only if 
)(As
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Definitions 4.2 
 

i. System (2.1) is exponentially stable if for any initial value ,)0( 0x      0)(t , for 
)(t

defined in equation (4.3)  
ii. The zero solution of system (2.1) is exponentially asymptotically stable if for any initial value 

,)0( 0x    0)0()(lim 


xt
t

 , for )(t defined as in equation (4.3)  

iii. If the zero solution of (2.1) is exponentially asymptotically stable, then the system solution )(tx  of 

equation (4.1) is exponentially asymptotically stable 
  

4.1 Stability Result  
 
Theorem 4.1  
 

Suppose nnEA  is a Metzler matrix with 0 AsI , such that the resolvent matrix in equation (4.2) is 

negative, then the zero solution of system (2.1) is exponentially asymptotically stable. 
 

Proof 
 

By the properties of Metzler matrix, if 01  A , then the geometric spectrum of A  is the set 
 

 0,0,max  AsIthatsuchsEss
.                                                          (4.5) 

 

Considering the resolvent matrix of equation (4.2), for any  , such that )( sr
n eIsI  , then 

 

    
    11   AIAses n

sr 
.                                                                                         (4.6) 

 
By Crammer’s rule, ji  entries of equation (4.2)is written as  
 

 

)(
)(

)(
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




P

X

f

AI

ij ijij 





,                                                                                   (4.7) 
 

where )(ijf  is a polynomial of degree less than n . By implication )(P  defined the poles of equation (4.6), 

and so 
 

max)( sP 
,                                                                                                                                (4.8)  

 

And therefore 
  1

 AIn
is stable. 

 
Also by the binomial theorem;  
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!2

)(
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32
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tAtA
tAIAILt




 

 
 

By the definition (4.1) of the Metzler matrix and the approximation )(max Ps  , the resolvent matrix is 

negative definite, and 
 

0lim)(lim 


At

tt
et

. 
 
Then the zero solution of system (2,1)is exponentially asymptotically stable, which implies exponential 
asymptotical stability of system (2.1). 
 

4.2 Computation of the Delay bounds 
 
In this section, results on the computation of the delay bounds of the system equations to be exponentially 
stable are presented.  Chiasson [17] stated that the asymptotic stability of (2.1) is within certain range of the 
delay values. The Extension of [17], and utilizing the stability theory of section (4.2)  (as largely dependent 
on the state transition matrix),  the resolvent matrix is thus used as an approximating tool for evaluation of 
eigenvalues and the corresponding delay bounds for system (2.1) to be asymptotically stable. Hence 
 

,)())(,( 1 AssssP                                           (4.9) 
 

which is a two variable polynomial with 
sre . The auxiliary polynomial of equation (4.9) is  

 

 ),(deg),
1

,())(,( 


 sPmsPssP m 


.  
 

Definition4.3 (Chiasson, [17])        
                                                                                

Let  kis ii ...,,1),,(  be the common zeros of 






 

),(),,(  sPsP for which 0,0)Re(  ii ss  and 

1,1  ii  . Then, for each such pairs ),( ii s ,  irs
ir err 

  /min 0
*   defines the minimum 

bound of ir  

 

5 Controllability Result 
 
The aim of this section is to develop theorems on the null controllability of system (2.0) for any initial 

condition 00 )(  t , given a control function )(tu , by using the linear ordinary control system and the free 

control system of (2.1) . Hence Hermes and LaSalle [18] defined the associated linear ordinary control 
system of (2.0) as 
 

               ,)(

)())(,()(

00 




tx

tDutxtAgtx

                                                                     (5.1) 
 
 and its corresponding integral trajectory as 
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




Tt

t

tAAt
T duDeeuttf

0

)(),,,( )(
000  

. 
 

The condition for properness of (5.1) as stated in [18] is that, if the free system of (2.0) written as 
 

  
)),(,())(,( txtAgtxtL

dt

d
t 

              (5.2) 
 

for ,))(,()())(,( rtxttxtxtL t    is uniformly asymptotically stable, then system (2.0) is null 

controllable.  
 

Definition 5.1  
 

i. Proper system: The system (5.1) is said to be proper on  10 , tt  if for any vector 1 nEx  , there 

exists a linear span of
ADe

 defined as 0,   ADex ,  10 , tt , almost everywhere, an

nDADAADDrank n  ]:...::[ 12

 . 

ii. Complete controllability: The system (5.1) is completely controllable on  10 , tt  if for any initial 

function 00 )(  t , there exists a control (input) function 1)(  nEtu , which is compact and can 

transfer the function to another state 11)(  t in a finite time .1t  

iii. Null controllability:  System (5.1) is null controllable on  10 , tt , if for any 01 tt  , there is an 

admissible control function 1
10 ],[:)(  nEttu  that transfer the periodic solution 

000 ),,,( xutfT    to 0),,,( 111  xutfT  , for  10 , tt . 

iv.  Reachable set: The state of the system nEx 1 , is reachable on ],[ 10 tt  if the exists an input 

function 1
10 ],[:)(  nEttu  that transfer ),( 00 tx to ),( 11 tx . The reachable set n

t ER   is the set 

of points reachable in t  seconds such that 
 

   



1

0

1 )()(
t

t

tA
t dDueR 

.                                                                                                             (5.3) 
 

Lemma 5.1 
 
If the corresponding input trajectories of the linear control system of (5.1) takes values in the lager Hilbert 

space of integrable functions, such that 1
10 ],[:)(  nEttu , for 01 tt  ,then asymptotically proper system is 

controllable. 
 
Proof: 
 
Assume system (5.1) is asymptotically proper, using the result of  [18], the integral trajectory of the linear 
ordinary control system is 
 

,0)(
1

0

11 )(
0   

t

t

tAAt duDee  

 
 

so that 
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


1

0

.)(0

t

t

A duDe  

        
 

Then, by definition (5.0-i), there exists a vector matrix nEx that span  )(  tADe  such that,    

                                                                                          

























,0)(

,0)(

*

0

*









uDex

and

duDex

AT

t

t

AT

                                                      (5.4)  
 

hold almost everywhere. 

 

By the properness assumption of lemma (5.1), if ),),],,([()( 1
10  nEttLtu , then equation (5.4) is 

satisfied if and only 

                                           

 

.0,  AtT Dex                                                            (5.5) 

 

 

 Defining 

 

  
,0,)(  AtDext

 
 

so that  

 

)1(...,2,1,0,0])[()(
1

1

 




nkforDeAxt
dt

d AtkT
n

n


 .                                                    (5.6) 

 

Evaluating equation (5.6) at 1...,2,1,0,0  nkfort  , the controllability matrix is obtained as 

 

]:...::::[ 132 DADADAADD n .                                                                                    (5.7) 

 

Algebraically, system (5.6) has a solution if  ,x  has n-linearly independent vector, hence 

 

nDADADAADDrank n  ]:...::::[ 132

. 
 

This implies controllability of system (2.1), hence the hypothesis of the Lemma (5.0) holds.  

                

Definition 5.2 
 

1 The reachability map on ],[ 01 tt  of the pair of matrices  ))(),((  BA  is the function 
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)8.5(.)(

)],,([:

1

0

1 )(

10






t

t

tA

nn
t

dDueu

EEttLR



 
 

2 Adjoint of a linear map: Let ),,,( FU and ),,,( FV  be Hilbert spaces and VUH : is a 

continuous linear map, the adjoint of H is the linear map UVH  :  defined by 

  uvDDuv ,, , for all VvUu  , . 

 

3 Self Adjoint: Let ),,,( FU  and UUH : be linear and continuous, H  is called a self 

adjoint if and only if  HH , such that for Uuv ,  .),()(,  uvDuDv  

 

Therefore for the reachable set tR  of (5.3), assume )()( tGDe tA  , ],[ 10 ttt  , and Vx , then  

 

.,

,)(

)()(

)())((

)()(

)()()(,,

1

0

1

0

1

0

1

0






































xR

uxtG

dttxutG

dttuxtG

dttutGx

dttutGxutGxRx

t

t

t

T

t

t

T

t

t

T

t

t

T
t

          
 

Hence the linear map of the adjoint 
tR is defined 

 

)9.5(..)(

)],,([:

1

0

1 )(

00

udDue

EttLER

t

t

tA

mn
t












 
 
Lemma 5.2 
 

The linear mapping nn
tt EERoR  :   between two finite dimensional spaces admit a matrix 

representation known as the controllability gramian matrix 
 


 

1

0

11 )(),( )()(
10

t

t

nnTtATtA EdeDDettW 

. 
 
Proof: 
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Using equation (5.9), with definition (5.2), it is shown that   xRRx tt ,, , and 

 




1

0

1 )()(: )(

t

t

tA
t dDueuR 

. 
 

Let  DxexR tA
t

)( 1))](([   , then 

 

,),(

)()]([

10

)()(
1

0

11

xttW

xdeDDexoRR

t

t

TtATtA
tt
















 

 

 
 

where ),( 10 ttW is the gramian matrix. 

 
Theorem 5.1 (Main Result III) 
 

Let nmn EEEJL :  be well defined such that )),(,()())(,( rtxttxtxtL t    and system (2.1) is 

equivalent to 
 

 ),()(

)0(

)()(),(

0

tCxtythatsuch

x

tDutAxxtL
dt

d
t









                                                                                                           (5.10)   
 

with a transfer function defined as   DAsesIC sr 1  . Then system (2.1) is null controllable if  

i.  The gramian matrix 


1

0

)()(
10 ),(

t

t

tATtA deDDettW
T

 ,   is nonsingular, 

ii.  System (5.10)  is asymptotically proper, 

iii. The controllable matrix ]:...::[ 1DAADD n   has a canonical form, 
iv. The transfer function has no zero/ pole cancellation. 

 
Proof: 
 
Consider the gramian matrix 
 




1

0

)()(
10 ),(

t

t

TtATtA deDDettW 

, 
 

such that matrices
)()( ij

T
ij bDanddD 

, for jiij db 
. Then 

 

)()2(2)1(1 ...)(sgn nn

S

dddD

n










,  
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and      
 

,...)(sgn

...)(sgn

...)(sgn

)()2(2)1(1
1

)(2)2(1)1(

)()2(2)1(1

111 nn
S

nn

S

nn

S

T

ddd

ddd

bbbD

n

n

n






































     
 

where nS
is the set of permutation,   is the permutation and 










oddisif

evenisif

,1

,1
sgn  . Let 1  be the 

inverse permutation of  , and also  sgnsgn 1 , therefore  sgnsgnsgn 1  .  Hence, 

 

.

...)(sgn

...)(sgn

)()2(2)1(1

)()2(2)1(1
1

111

D

ddd

dddD

nn

S

nn
S

T

n

n



















 










 
 
Therefore by the definition of the gramian matrix,  
   

   1

0

1

0

0),(
2

)()()(
10

t

t

tA
t

t

TtATtA dDedeDDettW  

.                                                       (5.11) 
 

Since D  is nonsingular by its properties, then  
 

0),( 10 ttW ,  
 

and hypothesis (i) of the theorem is proved. Also by lemma (5.0) hypothesis (ii) is satisfied. 
 

Proving (iii) using (ii); assume the controllable matrix    ]:...:::[ 1DAADD n  has  kC
invariant 

cyclic subspace decomposition, with distinct eigenvalues, and then   is diagonalizable with diagonal 
matrix 
 

,

......0

::

0...0

0...0

2

1























km

m

m

C

C

C



 
 

where kmC
defined the 

)ker( ks
. Then, the characteristic polynomial of  is, 

 

),(...)()()( 21 tmtmtmt k  
 

 ( )(tmk  is monic), and the minimal polynomial is, 
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rm
k

mm stststtm )(...)()()( 21
21  . 

 

 Hence, the direct sum decomposition of  is 
 

 
,...

)(...,)(ker)(ker

21

21
21

k

m
k

mm

CCC

sss r



 

 
 

where kC defined the companion matrix. Defining a nilpotent operator 0nN , for Zn , with a minimum 

polynomial of index k  written as 
kk tttm  1)0()( (clearly has eigenvalue zero),   so that kC  can be 

express in terms of the nilpotent matrix as  NIsC rkkk   ( I is an kr   identity matrix, N a nilpotent 

block) and the canonical form of the controllable matrix  is thus 
  

NIsNIsNIs rkkrr  ...2211 .                                                                       (5.12) 
 
Proving (iv); using the transform of equation (4.0) stated as  
 

    srsrsr DeAsesxAsessX  
11

)0()( ,    
                     

such that 
 

    





   srsrsr DeAsesxAsesLtx

111 )0()(
,  

                  
and the output function 
 

    





   srsrsr DeAsesCxAsesCLty

111 )0()(
.                                                   (5.13) 

 
Then, there exists a mapping of the control function to the reacheable set defined as 
          

,

)],,0([:

yu

EEtL nn





 
 

For 
 

.)()( 1 srsr
yu DeAesIs  

                                                                                                 (5.14) 
 

 The function )(syu  is the system transfer function of (5.10). 

 
Algebraically, (5.14) is expressed as 
 

)(...)(

)(...)(

)(

)(
)(

11

11

ii

ii
yu

psps

zszs
K

sa

sb
s






,  
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where poles
)( ip

 and zeros
)( iz

are the roots of 
)()( sbandsa

respectively. Assume 
,ii pz 
 then  

 

,lim 


yu

pz ii  
 

which contradict the concept of controllability . Therefore ii pz  (implies no zeros/poles cancellation). 

 

6 Illustration 
 
Consider the neutral delay model of a partial element equivalent circuit (PEEC) which includes new circuit 

element consisting of a retarded mutual coupling between the partial inductance of the form 
)( rtL p 

, but 
without retarded current sources of the form  
 

00

212

2

2

2

)(

)()()())()(

QtQ

tDutQatQ
dt

d
artQ

dt

d
tQ

dt

d





                                (6.1) 
 

with an output function )()( tCQty  . 
 
This is reduced to a first order system of the form 
 

)()(

,)(

),()())()((

0

00

tCQtyand

QtQ

tDutAQrtQtQ
dt

d







,                                         (6.2) 
 

where )(,
0

,
10

21
2121

ccC
d

D
aa

A 


















 . 

 
 

6.1 Exponential Stability Analysis of system (6.2): 
 

By theorem (4.1), A  is a stable Metzler matrix ( 0)( As ), if 1
2
22 4aaa 

 such that 01  A . Also, by 
the definition of the resolvent matrix  
 

 

,)()21(

)
)(

1
,())(,(

)1()21(

)())(,(

1
2

2
22

12
22

asas

s
sPssP

asas

AsesIssP

m

sr






















 
 

where m is the highest degree of  ))(,( sdsPin  , 
sre . Solving ))(,())(,( ssPandssP 



 
simultaneously to obtained  
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2

1

a

a
s   and 

2
1

2
21

2
1

2
2

2
1

22
1

2
21

2
1

2
21

2

)924)2()2(

a

aaaaaaaaaaa 
 , 

 

such that 0,0)Re(  ii ss  and 
1,1  ii 

 are satisfied, then the system is asymptotically stable . 

Also, for each such pairs of
),( ii s

, 
 irs

ir err 
  /min 0

*

  defines the minimum delay 

bounds of ir
 for system (4.2) to be asymptotically stable.  

 

6.2 Controllability Analysis of System (6.2) on  10 , tt , with an Initial Function

00 )( QtQ  , Control (input) Function
1)(  mEtDu  and Output Function )()( tCQty   

is as Follows: 
 

1 By the proved of hypothesis ( i) of theorem (5.1), the gramian matrix 

,),(
1

0

1

0

)()()(
10 

 

t

t

tA

t

t

tATtA DdedeDDettW
T

 

 
 and 

 

1
21)(

)(

21
21

][
0

0
][)(

10
exp)(exp

2

1






























 vv

e

e
vvt

aa
tA

t

t







, 
so that 

 

,0][
0

0
][),(

1

0

2

1
1

21)(

)(

2110  













 



t

t
t

t

Ddvv
e

e
vvttW 





 

where 21 ,vv are the corresponding eigenvectors of the eigenvalues 21 , of matrix A , and hence 

),( 10 ttW
 is nonsingular. 

 

2 Analysis of hypothesis (ii) of theorem (5.1) for properness property ;  
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Hence ]:...::[ 1DAADD n  is proper with rank 2. 
 

3 Analysis of hypothesis (iii) of theorem (5.1) for the canonical form of controllable matrix
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where 21 , ss  are the characteristic roots of the controllable matrix. 
 

4 Analysis of hypothesis (iv) of theorem (5.1) for the transfer function; 
 

 

 
 

 

,
)1()21(

))((

)1()21(

0
)()(

)1()21(

01

12
22
21

12
22

211221

12
22

1

2
21

1

asas

dsscc

asas

d
ssccacassc

asas

dssa

ass
cc

DAssC






























































 
 
which has no zero/pole cancellation? 
 

Hence by analysis 1 – 4, and for the appropriate choice of matrices 
CandDA ,,

, system (6.2) is 
controllable. 
    

7 Conclusion 
 
The periodic solution of a linear neutral system with an input function and initial value was obtained by 
employing the variation of constant method. Theory on uniqueness of the obtained solution was established 
and proved by utilizing Burton [5] inversion theory of a perturbed differential operator which yields the sum 
of a contraction and a compact map. The resolvent matrix of the system equation (which must be negative 
definite) was used as a tool to analyze the exponential stability of the system equation and the computation 
of the maximum value of the delay bounds for the system to be asymptotically stable. The controllability of 
the system was studied by the analyses of the linear ordinary control and the free control parts of the linear 
neutral system:- for properness, non-singularity of the gramian matrix, canonical form of the controllable 
matrix and the non zero/ pole cancellation of the transfer function matrix. Results obtained were employed 
on neutral delay model of a partial element equivalent circuit (PEEC) consisting of a retarded mutual 
coupling between the partial inductance which confirmed the suitability of the test. 
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